Mallilukujärjestys löytyy laitoksen sivuilta osoitteessa https://www.helsinki.fi/fi/ohjelmat/kandi/tietojenkasittelytieteen-kandiohjelma/opintojen-rakenne

Mallilukujärjestys?

Mallilukujärjestys kertoo, miten kursseja pitää ottaa, jotta valmistuisi kolmessa vuodessa luonnontieteen kandidaatiksi ilman suurempia vaikeuksia. Käpistelykurssit riippuvat tiedollisesti toisistaan varsin paljon, joten oikeaan suoritusjärjestykseen pitää kiinnittää huomiota enemmän kuin muissa aineissa. Formaalisti (matemaattisesti) ilmaistut teoria-asiat ovat myös varsin haastavia, varsinkin jos pohjalla ei ole pitkän matematiikan tai muiden muodollista ajattelua kehittävien aineiden opintoja lukiosta. Koneet eivät tajua epätäsmällistä selitystä, joten meidän pitää opetella muotoilemaan asioita mahdollisimman yksiselitteisesti ja etenemään systemaattisesti. Matematiikka opettaa formaalia ajattelua, ja siksi siitä meuhkataan niin paljon.

Monella kurssilla oletetaan esitietoina edellämainittua formaalista ajattelutapaa. Tämä tarkoittaa, että vaikka pakollista matematiikkaa on varsin vähän, käpistelijälle saattaa olla hyödyllistä istua enemmänkin matematiikan kursseilla. On siis tärkeää tiedostaa, että tietyntasoinen matematiikan osaaminen vaaditaan implisiittisesti tietojenkäsittelytieteen opinnoissa. Tämä ei tarkoita ettetkö pärjäisi opinnoissasi, vaikka et olisikaan matikkavelho.

Pakollisia kursseja järjestetään vähintään kerran vuodessa, pääasiassa silloin kun ne on sijoitettu mallilukujärjestykseen. Perusopintojen kursseja järjestetään useimmin. Kesäisin voi käydä ilmaiseksi opintoja Avoimessa yliopistossa (myös TKT:n perusopintokursseja), ja laitoksen omassa kesäopetuksessa harjoitustyökursseja (Ohjelmoinnin harjoitustyö, Tietokantasovellus, Tietorakenteiden harjoitustyö ja Ohjelmistotuotantoprojekti). Tässä kohtaa kannattaa taktikoida ja vähentää omaa työtaakkaa lukuvuoden aikana, koska edellämainittuja kursseja voi lähes varmuudella suorittaa myös kesäisin. Harjoitustyökurssit sopivat hyvin myös kesätöiden oheen suoritettavaksi, koska koululla ei ole pakko käydä montakaan kertaa kurssin aikana.

Pajoissa järjestää tukiopetusta keskeisissä ja vaikeaksi todetuissa kursseissa. Paja-ajat ja käytännöt sovitaan kurssi kohtaisesti, joten niitä hyödyntääkseen pitää itse lukea kurssisivulta infot.

Mikäli ensimmäisen syksyn keskeiset kurssit takkuavat, ei kannata iskeä kirvestä kiveen vaan ottaa käyttöön Sivuainekuvauksia.

Kriittinen polku ja kurssien riippuvuudet

Kriittiseen polkuun kuuluvat kaikki kurssit, joiden läpäisy ajoissa on tärkeää, jos mielii valmistua kolmessa vuodessa luonnontieteiden kandidaatiksi (LuK) ilman vaikeuksia. Kurssien välisistä riippuvuuksista ei tällä hetkellä ole tarjolla virallista ja täysin ajantasaista versiota. Lähes virheetön kaavio löytyy osoitteesta täältä. Kaaviota lukiessa tulee huomata, että kurssin johdatus tekoälyyn sijaan siinä kohdassa kuuluisi lukea: "johdatus tekoälyyn tai tietoturvan perusteet".

1. vuosi

Kurssi Periodi Op
Digitaidot + Tietokone työvälineenä + Akateemiset taidot I 3-4
Johdatus tietojenkäsittelytieteeseen + Englanti I-II 5 + 4
Ohjelmoinnin perusteet I 5
Ohjelmoinnin jatkokurssi II 5
Tietokoneen toiminta II 5
Johdatus yliopistomatematiikkaan I-II 5
Tietokantojen perusteet III 5
Tietorakenteet ja algoritmit III-IV 10
Ohjelmistotekniikan menetelmät IV 5

Ensimmäisen vuoden keväänä on myös hyvä suorittaa tietokantasovellus -harjoitustyö (4 op) ja/tai toinen kotimainen kieli (3 op). Suunnitellessaan opintojaan on hyvä tarkistaa harjoitustöiden esitietovaatimukset.

2. vuosi

Kurssi Periodi Op
Laskennan mallit I 5
Ohjelmistotuotanto II 5 + 1
Käyttöjärjestelmät III 5
Tietoliikenteen perusteet IV 5

Toisen vuoden aikana on viimeistään tehtävä ensimmäinen harjoitustyö, eikä ole huono idea suorittaa toistakin. Jos toisen ja kolmannen vuoden välisenä kesänä on aikaa ei ohjelmistotuotantoprojektin suorittaminen silloin ole hassumpi ajatus.

3. vuosi

Kurssi Periodi Op
Johdatus tekoälyyn / Tietoturvan perusteet I 5
Ohjelmistotuotantoprojekti I, II tai I-II 10
Kandidaatintutkielma + Tutkimustiedonhaku + Äidinkieli III-IV 10

Näiden lisäksi tavoiteajassa valmistumiseen vaaditaan myös kaikkien muiden kurssien, sivuaineiden ja erityisesti toisen kotimaisen kielen suorittaminen kolmessa vuodessa.

Mallilukujärjestyksen tulkitseminen ensimmäisenä vuotena

Tätä varten katso Fuksisyksyn mallilukujärjestys

Matematiikan ja menetelmätieteen sovittaminen malliaikatauluun

Matematiikkaa suositellaan käymään heti opintojen alkuun, jotta siitä saisi hyödyn irti varhaisen kandin teoreettisemmilla kursseilla. Matematiikan ja tilastotieteen kursseja voi käydä mallilukujärjestyksen kanssa suunnilleen näin:

1. vuosi, syksy

Matematiikan laitos järjestää yleensä syksyllä itseopiskelukurssin, jonka sisältönä nimenomaan lukiomatematiikan kertaus. Kurssin käyminen on hyödyllistä, jos kaipaa varmuutta ja lisää laskurutiinia, tai matikka on muuten vain unohtunut lukion jäljiltä. Tämä kurssi ei kuitenkaan ole sama asia kuin Matematiikka tutuksi. Matematiikka tutuksi kurssin käyminen on suositeltavaa kaikille.

  • Periodi I
    • Pakollinen Johdatus yliopistomatematiikkaan (5 op) pitää käydä tässä (I-II periodit), jos haluaa kolmeen vuoteen valmistua.
    • Matematiikka tutuksi (2? op) sisältö tuntuu muuttuvan joka vuosi riippuen kurssin pitäjästä. Jos MaTu jostain syystä järjestetään 5 opintopisteet kokoisena, kannattaa se ehdottomasti ottaa. Kuitenkin kahden opintopisteen kokoinen versiota ei ole mahdollista sisällyttää mihinkään muuhun kurssiin tasan 5 op kokoiseksi paketiksi.
    • Lineaarialgebra ja matriisilaskenta I (5 op) on hyödyllinen työkalukurssi varsinkin algoritmeista, tekoälystä ja grafiikkaohjelmoinnista kiinnostuneille. Kurssin voi suorittaa ongelmitta lukiomatematiikan pohjalta.
    • Raja-arvot, on harkitsemisen arvoinen vaihtoehtoja, jos matematiikka on hyvin hallussa eikä pelkää ylimääräistä työmäärää kakkosperiodissa (esim. jos koodaus on jo valmiiksi tuttua). Matikan perusfuksikurssina nämä opettaa matemaattista ajattelua paremmin kuin mikään muu vaihtoehto.
    • Tilastotiede ja R tutuksi 1, jos kiinnostaa datatiede, machine learning tai algo puoli (Suosittelen useita tilastotieteen kursseja jos nämä linjat kiinnostavat.)
  • Periodi II
    • 1. periodin valinnoista riippuen mahdollisesti yksi seuraavista, jos vain jaksaa opiskella lisää matikkaa ylibuukatussa kakkosperiodissa:
      • Lineaarialgebra ja matriisilaskenta II (5 op) tarjoaa lisää hyödyllisiä matriiseja ja vektoreita ykkösosan käyneille. Kurssissa paljon grafiikkaohjelmointiin liittyvää teoriaa.
      • Tilastotiede ja R tutuksi 2
      • Differentiaalilaskenta. (Yleishyödyllistä melkein kaikilla linjoilla)

1. vuosi, kevät

  • Periodit III - IV
    • Logiikka 1 ja 2, 5 op/kpl
    • Tai Tilastollinen päättely (IV),
    • Tai todennäköisyyslaskenta 1 (III), 5 op. (Tilastollinen päättely ja todennäköisyyslaskenta erittäin tärkeitä datatieteessä ja machine-learning opinnoissa).
    • Integraalilaskenta (III) ja sarjat (IV)

2. vuosi, syksy

  • Lineaarialgebra ja matriisilaskenta I ja II jos ei aiemmin ehtinyt, tai
  • Tilastotieteen johdantokurssi voi tässä vaiheessa piristää, varsinkin jos uranvaihto alkaa olla mielessä
  • Huom: 2. syksynä on parasta myös huolehtia tilan puolesta toisen sivuaineen opiskelun aloittamisesta, jos ei aio käydä kandiin pelkästään matematiikkaa ja tilastotiedettä. Monia sivuaineita voi aloittaa (tai jopa koko perusopinnot käydä) vain syksyisin, eikä malliaikataulun mukaan edetessä 3. syksyä ei oikein ehdi ihan kokonaan pyhittää toiselle aineelle, vaikka huomattavan osan kumminkin.

2. vuosi, kevät

3. vuosi

3. vuodella sitomatonta tilaa sekä syksyllä että keväällä 20 op. Käy niitä mitä et ole vielä käynyt, ja tarkastele viimeistään tässä vaiheessa myös linjaspesifejä matematiikan kurssisuosituksia (jos niitä on).