Siirry sisältöön

Ero sivun ”Matematiikan kurssit” versioiden välillä

Sortattu kurssit tasoittain
(Sortattu kurssit tasoittain)
Rivi 4: Rivi 4:


== Kurssit ==
== Kurssit ==
__NOTOC__


= Perusopinnot =
= Perusopinnot =  


* [[#Analyysin peruskurssi|Analyysin peruskurssi]]
== Analyysin peruskurssi ==
* [[#Analyysi I ja II|Analyysi I ja II]]
(10 op, syksy)
* [[#Lineaarialgebra I|Lineaarialgebra I]]
 
=== Esitietovaatimukset ===
Mitään esitietovaatimuksia tai -suosituksia ei ole. Analyysin peruskurssi sopii hyvin ensimmäiseksi yliopistomatematiikan kurssiksi.
 
=== Sisältö ===
Analyysin peruskurssi käsittelee suunnilleen samoja aiheita kuin teoreettisempi [[#Analyysi I ja II|Analyysi I]]. Keskeistä sisältöä ovat yhden muuttujan differentiaali- ja integraalilaskenta ja sarjat.
 
=== Soveltuvuus ===
Analyysin perusteet kuuluvat tietojenkäsittelytieteilijän matemaattiseen yleissivistykseen. Suoranaisia sovelluskohteita niille löytyy esimerkiksi tietokonegrafiikasta, suorituskykyanalyysista ja signaalinkäsittelystä. Jokin analyysin kurssi olisikin hyvä löytyä jokaisesta matematiikan sivuaineoppimäärästä.
 
Monet ovat nähneet kurssin lähinnä lukiomatematiikan kertauksena, joka ei tarjoa työläyteensä nähden mitään olennaista hyötyä.
 
== Analyysi I ja II ==
(10+10+2 op, syksy+kevät)


= Aineopinnot =  
=== Esitietovaatimukset ===
Varsinaisia esitietovaatimuksia ei ole. Lukiomatematiikkaan tottuneelle aloituskynnys voi kuitenkin olla korkea, joten jonkin kevyemmän kurssin suorittaminen tätä ennen saattaa kannattaa.
 
=== Sisältö ===
Analyysi I käsittelee lukujonoja, raja-arvoja, jatkuvuutta, derivoituvuutta ja alkeisfunktioita. Samalla se toimii johdatuksena matemaattiseen ajatteluun ja todistustekniikoihin. Lähestymistapa on selvästi teoreettisempi kuin mihin lukiossa tottui. Opettajien ja tutoreiden varoituksissa on perää; kurssi voi olla raskas ja vaikea. Kysymys ei ole kuitenkaan asioiden vaikeudesta; valtaosa siitä on jo lukiosta tuttua. Vaikeus ja raskaus tulevat lähinnä aloituskynnyksen korkeudesta. Asiat muuttuvat huomattavasti helpommiksi, jos onnistuu pääsemään yli kulttuurishokista.
 
Analyysi II:n keskeiset aiheet ovat sarjat ja integrointi. Tavaraa on paljon, uutta asiaa tulee enemmän kuin Analyysi I:ssä ja käsittelyvauhti on nopeahko. Kuitenkin jos selvisi Analyysi I:stä, selviää todennäköisesti tästäkin.


* [[#Algebra I|Algebra I]]
Viimeiset 2 op saa harjoitustyöstä, joka on sivuaineopiskelijoille vapaaehtoinen. Aiheen voi noutaa halutessaan jo syksyn Analyysi I:n toisen välikokeen jälkeen, mikä saattaa kannattaa. Aihettaan ei nimittäin saa itse valita ja kevään materiaalista saa paljon kieroutuneempia kysymyksiä. Käytännössä harjoitustyö on hieman laskari- tai koetehtävää laajempi tehtävä, josta tulee esittää parin sivun mittainen täsmällinen ratkaisu. Harvempi onnistuu välttymään iteraatioilta.
* [[#Lineaarialgebra II|Lineaarialgebra II]]
* [[#Logiikka I|Logiikka I]]
* [[#Johdatus diskreettiin matematiikkaan|Johdatus diskreettiin matematiikkaan]]
* [[#Mitta ja integraali|Mitta ja integraali]]
* [[#Topologia I|Topologia I]]
* [[#Vektorianalyysi|Vektorianalyysi]]


= Syventävät opinnot
Luennoijat laittavat luentomuistiinpanonsa usein verkkoon, mutta niistäkään ei yleensä ole hyvän oppikirjan korvikkeeksi. Niinpä luentojen seuraaminen onkin Analyysi I:ssä ja II:ssa poikkeuksellisen suositeltavaa.
* [[#Laskettavuuden teoria|Laskettavuuden teoria]]
* [[#Matemaattinen logiikka|Matemaattinen logiikka]]
* [[#Todennäköisyysteoria|Todennäköisyysteoria]]
* [[#Verkkoteoria|Verkkoteoria]]
* [[#Reaalianalyysi I|Reaalianalyysi I]]


= Vanhat kurssit =  
=== Soveltuvuus ===
Analyysi I ja II sekä [[#Analyysin peruskurssi|Analyysin peruskurssi]] käsittelevät olennaisesti samoja asioita, edelliset kaksi syvemmin ja teoreettisemmin, jälkimmäinen taas pintapuolisemmin ja soveltavammin. Kun Analyysiä on viime aikoina helpotettu ja muutettu opiskelijalähtöisemmäksi, se alkaa olla yhä useammalle opiskelijalle Analyysin peruskurssia suositeltavampi vaihtoehto.


* [[#Diskreetti matematiikka I|Diskreetti matematiikka I]]
= Aineopinnot =
* [[#Diskreetti matematiikka II|Diskreetti matematiikka II]]
* [[#Todennäköisyyslaskenta I|Todennäköisyyslaskenta I]]
* [[#Optimointi I|Optimointi I]]


== Algebra I ==
== Algebra I ==
Rivi 50: Rivi 55:
Ensimmäisen syksyn kurssiksi Algebra I ei useimmille sovi. Aloituskynnys on todennäköisesti liian korkea kurssin teoreettisen luonteen takia. Matemaattiseen ajattelutapaan ja yliopistomatematiikkaan kannattaa siis tutustua ennen kurssin aloittamista.
Ensimmäisen syksyn kurssiksi Algebra I ei useimmille sovi. Aloituskynnys on todennäköisesti liian korkea kurssin teoreettisen luonteen takia. Matemaattiseen ajattelutapaan ja yliopistomatematiikkaan kannattaa siis tutustua ennen kurssin aloittamista.


== Analyysin peruskurssi ==
== Vektorianalyysi ==
(10 op, syksy)
(10 op, syksy)


=== Esitietovaatimukset ===
=== Esitietovaatimukset ===
Mitään esitietovaatimuksia tai -suosituksia ei ole. Analyysin peruskurssi sopii hyvin ensimmäiseksi yliopistomatematiikan kurssiksi.
[[#Analyysi I ja II|Analyysi I ja II]] sekä
[[#Lineaarialgebra I|Lineaarialgebra I]]. Myös [[#Topologia I|Topologia I]]:n tiedoista on hyötyä.
 
=== Sisältö ===
Vektorianalyysi käsittelee useamman muuttujan differentiaali- ja integraalilaskentaa. Lähestymistapa on käytännöllisempi kuin Analyysi I+II:ssa, mikä on ymmärrettävää. Merkittävä osa yhden muuttujan funktioiden teoriasta yleistyy nimittäin vähällä vaivalla useamman muuttujan funktioille, joten samaa asiaa ei kannata käsitellä uudestaan yhtä tarkasti. Kannattaa huomioida, ettei kurssin suomenkielistä oppikirjaa ole ollut saatavilla enää vähään aikaan, vaan opiskelija joutuu joko turvautumaan kopiokoneeseen tai metsästämään itse vastaavaa kirjallisuutta.
 
=== Soveltuvuus ===
Vektorianalyysi ei ole enää samalla tavalla yleissivistystä kuin Analyysi I ja II. Kurssin tietoja tarvitaan samoilla aloilla kuin analyysin perusteitakin, mutta esimerkiksi ohjelmistotekniikkaan tai käyttöliittymiin erikoistuvalle niistä ei ole suurempaa hyötyä. Vektorianalyysia voi suositella lähinnä tutkijoiksi aikoville sekä teoreettisemmille aloille erikoistuville. Matematiikasta sivuainelaudaturin lukevien kannattaa erityisesti käydä Vektorianalyysi.
 
 
== Johdatus diskreettiin matematiikkaan ==
(5 op, syksy, periodi II)
 
=== Esitietovaatimukset ===
Ei ole. Tämä on ehkä suositeltavin ensimmäinen yliopistomatematiikan kurssi käpistelijöille.
 
=== Sisältö ===
Kurssilla tutustutaan eräisiin diskreetin matematiikan osa-alueisiin. Vastaan tulee relaatioita, kuvauksia, induktiota, rekursiota sekä perusteita kombinatoriikasta ja verkkoteoriasta.
 
''Paremmin tietävät voivat tarkentaa.''
 
=== Soveltuvuus ===
Tämä on ainoa matematiikan kurssi, joka on vuonna 2005 voimaan astuneissa
tutkintovaatimuksissa kaikille käpistelijöille pakollinen. Tämä on hyvästä
syystä, sillä monet kurssin asioista kävelevät vastaan jo monilla fuksivuoden
kursseilla. Yksi näistä kursseista on fuksikevään Tietorakenteet, johon
osallistumisen edellytyksenä on mm. Johdatus diskreettiin matematiikkaan (tai
vaihtoehtoisesti esitietokoe).
 
 
== Logiikka I ==
(10 op, kevät)
 
=== Esitietovaatimukset ===
Ei ole. Tällä kurssilla pärjännee hyvin lyhyenkin matematiikan pohjalta, vaikka matemaattinen ajattelu onkin tarpeen. Kannattaa muistaa, että filosofeillakin on omat pakolliset logiikan kurssinsa, jotka pureutuvat yhdessä syvemmälle kuin tämä peruskurssi.
 
=== Sisältö ===
Moni aineopintotason kurssi käsittelee logiikan perusteita, mutta Logiikka I on ainoa, joka esittää ne kattavasti. Pääpaino on propositio- ja predikaattilogiikassa, joskin kurssin loppupuolella saatetaan vilkaista joitain laajennoksia ja muunnelmia. Propositiologiikassa operoidaan pelkillä vakiosymboleilla, kun taas predikaattilogiikka tuo mukanaan muuttujat ja predikaatit. Muutaman keskeisen teoreettisen tuloksen ohella käsitellään varsin kattavasti totuustaulut, semanttiset puut ja luonnolliseksi päättelyksi kutsuttu järjestelmä, joka on toisinaan käsittämättömän kömpelö. (Luonnollisessa päättelyssä yritetään johtaa jokin lause tehdyistä oletuksista. Semanttisia puita käytettäessä puolestaan selvitetään, millä ehdoilla annettu lause on tosi.)
 
Hannele Salmisen ja Jouko Väänäsen kirja ''Johdatus logiikkaan'' on kaksipiippuinen juttu. Joiltain osiltaan se soveltuu hyvin itseopiskeluun ja mahdollistaa selvästi kurssia nopeamman etenemisen. Toisaalta kun vastaan tulee "induktiolla lauseen rakenteen suhteen", on aika hakata päätä seinään. Samat asiat olisi voinut todistaa huomattavasti selkeämmälläkin tavalla.
 
=== Soveltuvuus ===
Nykymatematiikka perustuu logiikkaan. Tietojenkäsittelytiede lähti liikkeelle
loogikoiden ajatusleikeistä. Eksakti ajattelu ja formaali esitystapa täytyy
hallita, jos haluaa pärjätä tietojenkäsittelytieteen opinnoissa. Esimerkiksi
tietokantojen ja ohjelmointikielten teoria sekä perinteinen tekoäly ovat
täynnä logiikkaa. Lienee siis varsin luonnollista, että logiikka kuuluu
jokaisen käpistelijän yleissivistykseen.
 
 
== Mitta ja integraali ==
(6 op, kevät)
 
=== Esitietovaatimukset ===
[[#Vektorianalyysi|Vektorianalyysi]]. [[#Topologia I|Topologia I]]:tä suositellaan vieläkin vahvemmin kuin Vektorianalyysin yhteydessä.
 
=== Sisältö ===
Janan luonnollinen mitta on sen pituus, tasokuvion mitta pinta-ala ja
kolmiulotteisen kappaleen mitta tilavuus. Tällä kurssilla yleistetään mitan
käsite ja tarkastellaan erityisesti Lebesguen mittaa, joka perustuu
luonnolliseen geometriseen mittaan. Mittateorian käsittelyn jälkeen määritellään
integroituvuus ja integraali kaikissa mitallisissa joukoissa ja todistetaan
monia integraalien ominaisuuksia, joita olisi hankala käsitellä aikaisempien
määritelmien perusteella.
 
=== Soveltuvuus ===
Mitta ja integraali on analyysin syventävien opintojen peruskurssi. Jos aikoo suorittaa
matematiikassa syventävien opintojen sivuainekokonaisuuden, tämä on eräs suositeltavimmista kursseista
erikoistumissuunnasta riippumatta. Erityisesti jos aikoo perehtyä
todennäköisyyslaskentaan syvällisesti, kuten älykkäiden järjestelmien kohdalla on usein tarpeen, mittateoria tulee hallita.
 
 
 
== Topologia I ==
(10 op, kevät)
 
=== Esitietovaatimukset ===
[[#Analyysi I ja II|Analyysi I]].
Kurssi on luonteeltaan abstrakti, joten muidenkin matematiikan kurssien
käyminen ennen tätä on suositeltavaa.


=== Sisältö ===
=== Sisältö ===
Analyysin peruskurssi käsittelee suunnilleen samoja aiheita kuin teoreettisempi [[#Analyysi I ja II|Analyysi I]]. Keskeistä sisältöä ovat yhden muuttujan differentiaali- ja integraalilaskenta ja sarjat.
Avoimuuden, jatkuvuuden ja raja-arvon käsitteet yleistetään metrisissä ja
normiavaruuksissa, minkä jälkeen johdetaan suuri joukko lähinnä intuitiivisia
tuloksia. Kurssi on luonteeltaan teoreettinen ja abstrakti samaan tapaan kuin
[[#Algebra I|Algebra I]]. Monet voivat kokea tämän kurssin vaikeutena, mutta tässäkin tapauksessa kysymys on ennemminkin korkeasta kynnyksestä kuin asioiden vaikeudesta. Mitä enemmän matematiikkaa on opiskellut ennen Topologia I:tä, sitä matalammaksi kynnys käy, kun tottuu asioiden käsittelyyn yleisellä tasolla. Jussi Väisälän kirja ''Topologia I'' sopii hyvin itseopiskelumateriaaliksi.
 
Kurssi käsittelee oikeastaan enemmän analyysin peruskäsitteitä kuin topologiaa. Voidaan perustellusti sanoa, että Topologia I suhtautuu topologiaan samalla tavalla kuin [[#Diskreetti matematiikka I|Diskreetti I]] diskreettiin matematiikkaan.


=== Soveltuvuus ===
=== Soveltuvuus ===
Analyysin perusteet kuuluvat tietojenkäsittelytieteilijän matemaattiseen yleissivistykseen. Suoranaisia sovelluskohteita niille löytyy esimerkiksi tietokonegrafiikasta, suorituskykyanalyysista ja signaalinkäsittelystä. Jokin analyysin kurssi olisikin hyvä löytyä jokaisesta matematiikan sivuaineoppimäärästä.
Topologia I on kurssi, joka on tarkoitettu lähinnä helpottamaan analyysin
opiskelua. Tietojenkäsittelytieteen opinnoissa siitä ei ole juuri apua, ellei
sitten tietokonegrafiikassa ja laskennallisessa geometriassa. Jos kuitenkin
aikoo suorittaa matematiikassa syventävät opinnot, tämä kurssi on hyvä sisällyttää
oppimäärään.
 
= Syventävät opinnot =
 
 
== Verkkoteoria ==
(10 op, suoritetaan loppukokeella)
 
=== Esitietovaatimukset ===
Tiukkoja esitietovaatimuksia ei ole, mutta [[#Diskreetti matematiikka II|Diskreetti matematiikka II]] on vahvasti suositeltava. Koska kysymys on laudatur-erikoiskurssista, kurssilla oletetaan useimpien alojen perusteet tutuiksi. Logiikan, lineaarialgebran, topologian ja todennäköisyyslaskennan alkeiden osaaminen on hyödyksi.
 
=== Sisältö ===
Tämä kurssi käsittelee nimensä mukaisesti verkkoteoriaa Diestelin kirjan
''[http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/ Graph Theory]'' pohjalta. Diskreetti II:ssa käsitellyt asiat ohitetaan nopeasti ensimmäisessä luvussa, minkä jälkeen käsitellään syvemmin parituksia, yhtenäisyyttä, tasoverkkoja, värityksiä, satunnaisverkkoja ja Ramseyn teoriaa. Laudatur-kurssin oppimateriaaliksi kirja on poikkeuksellisen selkeä ja ymmärrettävä.


Monet ovat nähneet kurssin lähinnä lukiomatematiikan kertauksena, joka ei tarjoa työläyteensä nähden mitään olennaista hyötyä.
=== Soveltuvuus ===
Matematiikan laudatur-erikoiskurssille tuleva toivottavasti tietää mitä sieltä
on hakemassa. Verkkoteoria selventää jonkin verran esimerkiksi Algoritmien
suunnittelussa ja analyysissa vastaan tulevia käsitteitä, mutta hyöty ei ole
kovinkaan suuri. Kuitenkin jos matematiikka kiinnostaa, sitä kannattaa
opiskella kun siihen on mahdollisuus.


== Analyysi I ja II ==
== Todennäköisyysteoria ==
(10+10+2 op, syksy+kevät)
(10 op, kevät)


=== Esitietovaatimukset ===
=== Esitietovaatimukset ===
Varsinaisia esitietovaatimuksia ei ole. Lukiomatematiikkaan tottuneelle aloituskynnys voi kuitenkin olla korkea, joten jonkin kevyemmän kurssin suorittaminen tätä ennen saattaa kannattaa.
[[#Mitta ja integraali|Mitta ja integraali]] ja [[#Todennäköisyyslaskenta I|Todennäköisyyslaskenta I]].


=== Sisältö ===
=== Sisältö ===
Analyysi I käsittelee lukujonoja, raja-arvoja, jatkuvuutta, derivoituvuutta ja alkeisfunktioita. Samalla se toimii johdatuksena matemaattiseen ajatteluun ja todistustekniikoihin. Lähestymistapa on selvästi teoreettisempi kuin mihin lukiossa tottui. Opettajien ja tutoreiden varoituksissa on perää; kurssi voi olla raskas ja vaikea. Kysymys ei ole kuitenkaan asioiden vaikeudesta; valtaosa siitä on jo lukiosta tuttua. Vaikeus ja raskaus tulevat lähinnä aloituskynnyksen korkeudesta. Asiat muuttuvat huomattavasti helpommiksi, jos onnistuu pääsemään yli kulttuurishokista.
Lyhyesti sanottuna Todennäköisyysteoriassa käsitellään
todennäköisyyslaskentaa mittateorian pohjalta. Kurssi on laudatur-kurssiksi
siinä mielessä helppo, että jos mittateoria ja todennäköisyyslaskenta ovat
ennestään tuttuja, niiden yhdistäminen tapahtuu varsin intuitiivisesti.
Uusia käsitteitä ei tule kovinkaan paljon Todari I:n päälle, vaan kysymys
on ennemminkin pohjan rakentamisesta aiemmin opitun alle.
 
=== Soveltuvuus ===
Todari II on hyödyllinen kurssi erityisesti älykkäiden järjestelmien
linjalla, jossa kaikki perustuu oikeastaan tilastotieteeseen ja
todennäköisyyslaskentaan. Todari I:ssä opittiin lähinnä soveltamaan
todennäköisyyslaskentaa, kun taas tällä jatkokurssilla päästään käsiksi
asian ytimeen ja opitaan ehkä ymmärtämäänkin sitä.
 
 
== Reaalianalyysi I ==
(6 op, kevät)


Analyysi II:n keskeiset aiheet ovat sarjat ja integrointi. Tavaraa on paljon, uutta asiaa tulee enemmän kuin Analyysi I:ssä ja käsittelyvauhti on nopeahko. Kuitenkin jos selvisi Analyysi I:stä, selviää todennäköisesti tästäkin.
=== Esitietovaatimukset ===
[[#Mitta ja integraali|Mitta ja integraali]].


Viimeiset 2 op saa harjoitustyöstä, joka on sivuaineopiskelijoille vapaaehtoinen. Aiheen voi noutaa halutessaan jo syksyn Analyysi I:n toisen välikokeen jälkeen, mikä saattaa kannattaa. Aihettaan ei nimittäin saa itse valita ja kevään materiaalista saa paljon kieroutuneempia kysymyksiä. Käytännössä harjoitustyö on hieman laskari- tai koetehtävää laajempi tehtävä, josta tulee esittää parin sivun mittainen täsmällinen ratkaisu. Harvempi onnistuu välttymään iteraatioilta.
=== Sisältö ===
Reaalianalyysi I käsittelee reaalianalyysin perusteita teoreettiselta
näkökannalta. Samaan aikaan luennoidaan myös Sovelletun analyysin perusteet,
joka lienee suunnattu enemmän differentiaaliyhtälöitä tietokoneilla ratkoville
soveltaville matemaatikoille. Teoreettisen lähestymistavan huomaa esimerkiksi
siitä, että vaikka kurssilla oppii uusia asioita, saattaa käsitys joidenkin
niistä merkityksestä jäädä puuttumaan.


Luennoijat laittavat luentomuistiinpanonsa usein verkkoon, mutta niistäkään ei yleensä ole hyvän oppikirjan korvikkeeksi. Niinpä luentojen seuraaminen onkin Analyysi I:ssä ja II:ssa poikkeuksellisen suositeltavaa.
Siinä missä Mitta ja integraali keskittyi integrointiin, laajennetaan tällä
kurssilla derivoinnin ja derivaatan käsitettä. Lisäksi käsitellään
L<sup>p</sup>-avaruuksia sekä absoluuttisesti jatkuvia, rajoitetusti
heilahtelevia ja muita "kiltisti" käyttäytyviä funktioita. Kurssia vaivaa lievä
päämäärättömyys, vaikka monet käsiteltävät asiat ovatkin aikaisemmilla
kursseilla saatujen tulosten yleistyksiä.


=== Soveltuvuus ===
=== Soveltuvuus ===
Analyysi I ja II sekä [[#Analyysin peruskurssi|Analyysin peruskurssi]] käsittelevät olennaisesti samoja asioita, edelliset kaksi syvemmin ja teoreettisemmin, jälkimmäinen taas pintapuolisemmin ja soveltavammin. Kun Analyysiä on viime aikoina helpotettu ja muutettu opiskelijalähtöisemmäksi, se alkaa olla yhä useammalle opiskelijalle Analyysin peruskurssia suositeltavampi vaihtoehto.
Reaalianalyysi I on luontevaa jatkoa Mitalle ja integraalille, joten samat
perustelut pätevät senkin kohdalla. Toinen jatkovaihtoehto Mitan ja integraalin
jälkeen olisi Sovelletun analyysin perusteet, mutta minulla ei ole käsitystä sen
sisällöstä tai soveltuvuudesta.
 


== Vektorianalyysi ==
== Matemaattinen logiikka ==
(10 op, syksy)
(10 op, syksy)


=== Esitietovaatimukset ===
=== Esitietovaatimukset ===
[[#Analyysi I ja II|Analyysi I ja II]] sekä
Varsinaisia esitietovaatimuksia ei ole. Käytännössä logiikan perustietojen hallitseminen esimerkiksi kurssilta [[#Logiikka I|Logiikka I]] on lähes välttämätöntä, eikä muidenkaan kurssien käyminen ole ainakaan haitaksi. Kysymys on joka tapauksessa syventävien opintojen kurssista, joten matemaattisen ajattelutavan omaksumista voidaan pitää välttämättömänä edellytyksenä kurssille osallistumiseen.
[[#Lineaarialgebra I|Lineaarialgebra I]]. Myös [[#Topologia I|Topologia I]]:n tiedoista on hyötyä.
 
=== Sisältö ===
Periaatteessa kurssin sisältö vastaa hyvin Jouko Väänäsen kirjaa ''Matemaattinen logiikka'', mutta käänteisessä järjestyksessä. Läpi käydään jo logiikan peruskurssilla tutuksi tulleet logiikan perusteet hieman teoreettisemmasta (ja monien mielestä keinotekoisesti vaikeutetusta) näkökulmasta. Myöhemmin kurssilla törmätään muun muassa rekursiivisiin funktioihin ja laskettavuusteoriaan. Mielipiteitä on monia, mutta ainakin omasta mielestäni kirjan lähestymistapa on mielekkäämpi kuin kurssilla viime aikoina käytetty.
 
=== Soveltuvuus ===
Matemaattista logiikkaa voidaan suositella ennen kaikkea logiikasta kiinnostuneille. Syventävien opintojen kurssien joukossa se lienee sieltä helpoimmasta päästä, vaikka loogikoille tyypillisen käsittämätön notaatio yrittääkin parhaansa mukaan sabotoida ymmärrystä. Hyötyä kurssista saattaa olla, jos esimerkiksi laskennan teoria, tietokantojen mallinnus, ohjelmointikielten periaatteet tai perinteinen tekoäly kiinnostavat.
 
 
== Laskettavuuden teoria ==
(10 op, satunnaisesti)
 
=== Esitietovaatimukset ===
Varsinaisia esitietovaatimuksia ei ole, mutta matemaattisen
ajattelutavan on syytä olla tuttu. Erityisesti
[[#Matemaattinen logiikka|Matemaattisesta logiikasta]] ja TKTL:n
kursseista Ohjelmoinnin ja laskennan perusmallit sekä Laskettavuuden
teoria on hyötyä.


=== Sisältö ===
=== Sisältö ===
Vektorianalyysi käsittelee useamman muuttujan differentiaali- ja integraalilaskentaa. Lähestymistapa on käytännöllisempi kuin Analyysi I+II:ssa, mikä on ymmärrettävää. Merkittävä osa yhden muuttujan funktioiden teoriasta yleistyy nimittäin vähällä vaivalla useamman muuttujan funktioille, joten samaa asiaa ei kannata käsitellä uudestaan yhtä tarkasti. Kannattaa huomioida, ettei kurssin suomenkielistä oppikirjaa ole ollut saatavilla enää vähään aikaan, vaan opiskelija joutuu joko turvautumaan kopiokoneeseen tai metsästämään itse vastaavaa kirjallisuutta.
Laskettavuutta, ratkeavuutta ja rekursiivisuutta matemaatikon
näkökulmasta. Turingin koneiden ja ohjelmien sijaan lähtökohtina ovat
rekursiiviset funktiot ja eräänlainen RAM-kone. Monet asiat saadaan
todistettua tyylikkäämmin tai helpommin kuin TKTL:n Laskennan
teoriassa. Syksyn 2002 kurssi perustui Väänäsen 80-luvulla tekemiin
luentomuistiinpanoihin.


=== Soveltuvuus ===
=== Soveltuvuus ===
Vektorianalyysi ei ole enää samalla tavalla yleissivistystä kuin Analyysi I ja II. Kurssin tietoja tarvitaan samoilla aloilla kuin analyysin perusteitakin, mutta esimerkiksi ohjelmistotekniikkaan tai käyttöliittymiin erikoistuvalle niistä ei ole suurempaa hyötyä. Vektorianalyysia voi suositella lähinnä tutkijoiksi aikoville sekä teoreettisemmille aloille erikoistuville. Matematiikasta sivuainelaudaturin lukevien kannattaa erityisesti käydä Vektorianalyysi.
Tämän kurssin käymisestä ei ole yhtään mitään hyötyä. Jos laskennan teoria jostain syystä kuitenkin kiinnostaa, tämän kurssin käyminen on ehdottoman suositeltavaa jo yksin sen tarjoaman vaihtoehtoisen lähestymistavan takia.
 
 
 
= Vanhat kurssit =
 
Alla olevia kursseja ei enää luennoida tai ne ovat korvautuneet muilla kursseilla.


== Diskreetti matematiikka I ==
== Diskreetti matematiikka I ==
Rivi 139: Rivi 309:
tietojenkäsittelytieteen matemaattisista perusteista kiinnostuneille ja ennen
tietojenkäsittelytieteen matemaattisista perusteista kiinnostuneille ja ennen
kaikkea algoritmien erikoistumislinjan valinneille.
kaikkea algoritmien erikoistumislinjan valinneille.
== Johdatus diskreettiin matematiikkaan ==
(5 op, syksy, periodi II)
=== Esitietovaatimukset ===
Ei ole. Tämä on ehkä suositeltavin ensimmäinen yliopistomatematiikan kurssi käpistelijöille.
=== Sisältö ===
Kurssilla tutustutaan eräisiin diskreetin matematiikan osa-alueisiin. Vastaan tulee relaatioita, kuvauksia, induktiota, rekursiota sekä perusteita kombinatoriikasta ja verkkoteoriasta.
''Paremmin tietävät voivat tarkentaa.''
=== Soveltuvuus ===
Tämä on ainoa matematiikan kurssi, joka on vuonna 2005 voimaan astuneissa
tutkintovaatimuksissa kaikille käpistelijöille pakollinen. Tämä on hyvästä
syystä, sillä monet kurssin asioista kävelevät vastaan jo monilla fuksivuoden
kursseilla. Yksi näistä kursseista on fuksikevään Tietorakenteet, johon
osallistumisen edellytyksenä on mm. Johdatus diskreettiin matematiikkaan (tai
vaihtoehtoisesti esitietokoe).
== Laskettavuuden teoria ==
(10 op, satunnaisesti)
=== Esitietovaatimukset ===
Varsinaisia esitietovaatimuksia ei ole, mutta matemaattisen
ajattelutavan on syytä olla tuttu. Erityisesti
[[#Matemaattinen logiikka|Matemaattisesta logiikasta]] ja TKTL:n
kursseista Ohjelmoinnin ja laskennan perusmallit sekä Laskettavuuden
teoria on hyötyä.
=== Sisältö ===
Laskettavuutta, ratkeavuutta ja rekursiivisuutta matemaatikon
näkökulmasta. Turingin koneiden ja ohjelmien sijaan lähtökohtina ovat
rekursiiviset funktiot ja eräänlainen RAM-kone. Monet asiat saadaan
todistettua tyylikkäämmin tai helpommin kuin TKTL:n Laskennan
teoriassa. Syksyn 2002 kurssi perustui Väänäsen 80-luvulla tekemiin
luentomuistiinpanoihin.
=== Soveltuvuus ===
Tämän kurssin käymisestä ei ole yhtään mitään hyötyä. Jos laskennan teoria jostain syystä kuitenkin kiinnostaa, tämän kurssin käyminen on ehdottoman suositeltavaa jo yksin sen tarjoaman vaihtoehtoisen lähestymistavan takia.


== Lineaarialgebra I ==
== Lineaarialgebra I ==
Rivi 229: Rivi 359:
lineaarialgebraa, kurssin käyminen on perusteltua. Muuten sitä voi suositella
lineaarialgebraa, kurssin käyminen on perusteltua. Muuten sitä voi suositella
lähinnä heille, jotka ovat kiinnostuneita matematiikasta sen itsensä takia.
lähinnä heille, jotka ovat kiinnostuneita matematiikasta sen itsensä takia.
== Logiikka I ==
(10 op, kevät)
=== Esitietovaatimukset ===
Ei ole. Tällä kurssilla pärjännee hyvin lyhyenkin matematiikan pohjalta, vaikka matemaattinen ajattelu onkin tarpeen. Kannattaa muistaa, että filosofeillakin on omat pakolliset logiikan kurssinsa, jotka pureutuvat yhdessä syvemmälle kuin tämä peruskurssi.
=== Sisältö ===
Moni aineopintotason kurssi käsittelee logiikan perusteita, mutta Logiikka I on ainoa, joka esittää ne kattavasti. Pääpaino on propositio- ja predikaattilogiikassa, joskin kurssin loppupuolella saatetaan vilkaista joitain laajennoksia ja muunnelmia. Propositiologiikassa operoidaan pelkillä vakiosymboleilla, kun taas predikaattilogiikka tuo mukanaan muuttujat ja predikaatit. Muutaman keskeisen teoreettisen tuloksen ohella käsitellään varsin kattavasti totuustaulut, semanttiset puut ja luonnolliseksi päättelyksi kutsuttu järjestelmä, joka on toisinaan käsittämättömän kömpelö. (Luonnollisessa päättelyssä yritetään johtaa jokin lause tehdyistä oletuksista. Semanttisia puita käytettäessä puolestaan selvitetään, millä ehdoilla annettu lause on tosi.)
Hannele Salmisen ja Jouko Väänäsen kirja ''Johdatus logiikkaan'' on kaksipiippuinen juttu. Joiltain osiltaan se soveltuu hyvin itseopiskeluun ja mahdollistaa selvästi kurssia nopeamman etenemisen. Toisaalta kun vastaan tulee "induktiolla lauseen rakenteen suhteen", on aika hakata päätä seinään. Samat asiat olisi voinut todistaa huomattavasti selkeämmälläkin tavalla.
=== Soveltuvuus ===
Nykymatematiikka perustuu logiikkaan. Tietojenkäsittelytiede lähti liikkeelle
loogikoiden ajatusleikeistä. Eksakti ajattelu ja formaali esitystapa täytyy
hallita, jos haluaa pärjätä tietojenkäsittelytieteen opinnoissa. Esimerkiksi
tietokantojen ja ohjelmointikielten teoria sekä perinteinen tekoäly ovat
täynnä logiikkaa. Lienee siis varsin luonnollista, että logiikka kuuluu
jokaisen käpistelijän yleissivistykseen.
== Matemaattinen logiikka ==
(10 op, syksy)
=== Esitietovaatimukset ===
Varsinaisia esitietovaatimuksia ei ole. Käytännössä logiikan perustietojen hallitseminen esimerkiksi kurssilta [[#Logiikka I|Logiikka I]] on lähes välttämätöntä, eikä muidenkaan kurssien käyminen ole ainakaan haitaksi. Kysymys on joka tapauksessa syventävien opintojen kurssista, joten matemaattisen ajattelutavan omaksumista voidaan pitää välttämättömänä edellytyksenä kurssille osallistumiseen.
=== Sisältö ===
Periaatteessa kurssin sisältö vastaa hyvin Jouko Väänäsen kirjaa ''Matemaattinen logiikka'', mutta käänteisessä järjestyksessä. Läpi käydään jo logiikan peruskurssilla tutuksi tulleet logiikan perusteet hieman teoreettisemmasta (ja monien mielestä keinotekoisesti vaikeutetusta) näkökulmasta. Myöhemmin kurssilla törmätään muun muassa rekursiivisiin funktioihin ja laskettavuusteoriaan. Mielipiteitä on monia, mutta ainakin omasta mielestäni kirjan lähestymistapa on mielekkäämpi kuin kurssilla viime aikoina käytetty.
=== Soveltuvuus ===
Matemaattista logiikkaa voidaan suositella ennen kaikkea logiikasta kiinnostuneille. Syventävien opintojen kurssien joukossa se lienee sieltä helpoimmasta päästä, vaikka loogikoille tyypillisen käsittämätön notaatio yrittääkin parhaansa mukaan sabotoida ymmärrystä. Hyötyä kurssista saattaa olla, jos esimerkiksi laskennan teoria, tietokantojen mallinnus, ohjelmointikielten periaatteet tai perinteinen tekoäly kiinnostavat.
== Mitta ja integraali ==
(6 op, kevät)
=== Esitietovaatimukset ===
[[#Vektorianalyysi|Vektorianalyysi]]. [[#Topologia I|Topologia I]]:tä suositellaan vieläkin vahvemmin kuin Vektorianalyysin yhteydessä.
=== Sisältö ===
Janan luonnollinen mitta on sen pituus, tasokuvion mitta pinta-ala ja
kolmiulotteisen kappaleen mitta tilavuus. Tällä kurssilla yleistetään mitan
käsite ja tarkastellaan erityisesti Lebesguen mittaa, joka perustuu
luonnolliseen geometriseen mittaan. Mittateorian käsittelyn jälkeen määritellään
integroituvuus ja integraali kaikissa mitallisissa joukoissa ja todistetaan
monia integraalien ominaisuuksia, joita olisi hankala käsitellä aikaisempien
määritelmien perusteella.
=== Soveltuvuus ===
Mitta ja integraali on analyysin syventävien opintojen peruskurssi. Jos aikoo suorittaa
matematiikassa syventävien opintojen sivuainekokonaisuuden, tämä on eräs suositeltavimmista kursseista
erikoistumissuunnasta riippumatta. Erityisesti jos aikoo perehtyä
todennäköisyyslaskentaan syvällisesti, kuten älykkäiden järjestelmien kohdalla on usein tarpeen, mittateoria tulee hallita.


== Optimointi I ==
== Optimointi I ==
Rivi 302: Rivi 380:
numeerinen matematiikka tai tieteellinen laskenta kiinnostaa, on Optimointi I
numeerinen matematiikka tai tieteellinen laskenta kiinnostaa, on Optimointi I
varmastikin hyödyllinen kurssi.
varmastikin hyödyllinen kurssi.
== Reaalianalyysi I ==
(6 op, kevät)
=== Esitietovaatimukset ===
[[#Mitta ja integraali|Mitta ja integraali]].
=== Sisältö ===
Reaalianalyysi I käsittelee reaalianalyysin perusteita teoreettiselta
näkökannalta. Samaan aikaan luennoidaan myös Sovelletun analyysin perusteet,
joka lienee suunnattu enemmän differentiaaliyhtälöitä tietokoneilla ratkoville
soveltaville matemaatikoille. Teoreettisen lähestymistavan huomaa esimerkiksi
siitä, että vaikka kurssilla oppii uusia asioita, saattaa käsitys joidenkin
niistä merkityksestä jäädä puuttumaan.
Siinä missä Mitta ja integraali keskittyi integrointiin, laajennetaan tällä
kurssilla derivoinnin ja derivaatan käsitettä. Lisäksi käsitellään
L<sup>p</sup>-avaruuksia sekä absoluuttisesti jatkuvia, rajoitetusti
heilahtelevia ja muita "kiltisti" käyttäytyviä funktioita. Kurssia vaivaa lievä
päämäärättömyys, vaikka monet käsiteltävät asiat ovatkin aikaisemmilla
kursseilla saatujen tulosten yleistyksiä.
=== Soveltuvuus ===
Reaalianalyysi I on luontevaa jatkoa Mitalle ja integraalille, joten samat
perustelut pätevät senkin kohdalla. Toinen jatkovaihtoehto Mitan ja integraalin
jälkeen olisi Sovelletun analyysin perusteet, mutta minulla ei ole käsitystä sen
sisällöstä tai soveltuvuudesta.


== Todennäköisyyslaskenta I ==
== Todennäköisyyslaskenta I ==
Rivi 348: Rivi 399:
järjestelmissä. Sen suorittaminen onkin suositeltavaa, jos aikoo opiskella
järjestelmissä. Sen suorittaminen onkin suositeltavaa, jos aikoo opiskella
matematiikkaa minimilaajuista perusopintokokonaisuutta enempää.
matematiikkaa minimilaajuista perusopintokokonaisuutta enempää.
== Todennäköisyysteoria ==
(10 op, kevät)
=== Esitietovaatimukset ===
[[#Mitta ja integraali|Mitta ja integraali]] ja [[#Todennäköisyyslaskenta I|Todennäköisyyslaskenta I]].
=== Sisältö ===
Lyhyesti sanottuna Todennäköisyysteoriassa käsitellään
todennäköisyyslaskentaa mittateorian pohjalta. Kurssi on laudatur-kurssiksi
siinä mielessä helppo, että jos mittateoria ja todennäköisyyslaskenta ovat
ennestään tuttuja, niiden yhdistäminen tapahtuu varsin intuitiivisesti.
Uusia käsitteitä ei tule kovinkaan paljon Todari I:n päälle, vaan kysymys
on ennemminkin pohjan rakentamisesta aiemmin opitun alle.
=== Soveltuvuus ===
Todari II on hyödyllinen kurssi erityisesti älykkäiden järjestelmien
linjalla, jossa kaikki perustuu oikeastaan tilastotieteeseen ja
todennäköisyyslaskentaan. Todari I:ssä opittiin lähinnä soveltamaan
todennäköisyyslaskentaa, kun taas tällä jatkokurssilla päästään käsiksi
asian ytimeen ja opitaan ehkä ymmärtämäänkin sitä.
== Topologia I ==
(10 op, kevät)
=== Esitietovaatimukset ===
[[#Analyysi I ja II|Analyysi I]].
Kurssi on luonteeltaan abstrakti, joten muidenkin matematiikan kurssien
käyminen ennen tätä on suositeltavaa.
=== Sisältö ===
Avoimuuden, jatkuvuuden ja raja-arvon käsitteet yleistetään metrisissä ja
normiavaruuksissa, minkä jälkeen johdetaan suuri joukko lähinnä intuitiivisia
tuloksia. Kurssi on luonteeltaan teoreettinen ja abstrakti samaan tapaan kuin
[[#Algebra I|Algebra I]]. Monet voivat kokea tämän kurssin vaikeutena, mutta tässäkin tapauksessa kysymys on ennemminkin korkeasta kynnyksestä kuin asioiden vaikeudesta. Mitä enemmän matematiikkaa on opiskellut ennen Topologia I:tä, sitä matalammaksi kynnys käy, kun tottuu asioiden käsittelyyn yleisellä tasolla. Jussi Väisälän kirja ''Topologia I'' sopii hyvin itseopiskelumateriaaliksi.
Kurssi käsittelee oikeastaan enemmän analyysin peruskäsitteitä kuin topologiaa. Voidaan perustellusti sanoa, että Topologia I suhtautuu topologiaan samalla tavalla kuin [[#Diskreetti matematiikka I|Diskreetti I]] diskreettiin matematiikkaan.
=== Soveltuvuus ===
Topologia I on kurssi, joka on tarkoitettu lähinnä helpottamaan analyysin
opiskelua. Tietojenkäsittelytieteen opinnoissa siitä ei ole juuri apua, ellei
sitten tietokonegrafiikassa ja laskennallisessa geometriassa. Jos kuitenkin
aikoo suorittaa matematiikassa syventävät opinnot, tämä kurssi on hyvä sisällyttää
oppimäärään.
== Verkkoteoria ==
(10 op, suoritetaan loppukokeella)
=== Esitietovaatimukset ===
Tiukkoja esitietovaatimuksia ei ole, mutta [[#Diskreetti matematiikka II|Diskreetti matematiikka II]] on vahvasti suositeltava. Koska kysymys on laudatur-erikoiskurssista, kurssilla oletetaan useimpien alojen perusteet tutuiksi. Logiikan, lineaarialgebran, topologian ja todennäköisyyslaskennan alkeiden osaaminen on hyödyksi.
=== Sisältö ===
Tämä kurssi käsittelee nimensä mukaisesti verkkoteoriaa Diestelin kirjan
''[http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/ Graph Theory]'' pohjalta. Diskreetti II:ssa käsitellyt asiat ohitetaan nopeasti ensimmäisessä luvussa, minkä jälkeen käsitellään syvemmin parituksia, yhtenäisyyttä, tasoverkkoja, värityksiä, satunnaisverkkoja ja Ramseyn teoriaa. Laudatur-kurssin oppimateriaaliksi kirja on poikkeuksellisen selkeä ja ymmärrettävä.
=== Soveltuvuus ===
Matematiikan laudatur-erikoiskurssille tuleva toivottavasti tietää mitä sieltä
on hakemassa. Verkkoteoria selventää jonkin verran esimerkiksi Algoritmien
suunnittelussa ja analyysissa vastaan tulevia käsitteitä, mutta hyöty ei ole
kovinkaan suuri. Kuitenkin jos matematiikka kiinnostaa, sitä kannattaa
opiskella kun siihen on mahdollisuus.
40

muokkausta