Satunnainen esimerkki induktiotodistuksesta

Versio hetkellä 5. syyskuuta 2007 kello 21.23 – tehnyt Sini (keskustelu | muokkaukset)
Ykkösvaihe: todistetaan että toimii kun n=0:
sigma ( k = 0, 0 ) { k(k+1) } = 0(0+1)(0+2) / 3
                     0(0+1)   = 3/3
                            1 = 1

Kakkosvaihe: oletetaan että toimii kun n = x jollekin x (ja me tiedetään että jollakin x se toimii koska just todistettiin että vaikkapa x = 0 toimii). Todistetaan tän pohjalta että toimii myös kun n = x + 1 eli yhtä isompi.

Oletuksen perusteella me tiedetään että 

sigma ( k = 0, x ) { k(k+1) } = x(x+1)(x+2) / 3   ilman mitään ongelmia, ei tarvi ees siivota.