Satunnainen esimerkki induktiotodistuksesta
Ykkösvaihe: todistetaan että toimii kun n=0: sigma ( k = 0, 0 ) { k(k+1) } = 0(0+1)(0+2) / 3 0(0+1) = 3/3 1 = 1 Kakkosvaihe: oletetaan että toimii kun n = x jollekin x (ja me tiedetään että jollakin x se toimii koska just todistettiin että vaikkapa x = 0 toimii). Todistetaan tän pohjalta että toimii myös kun n = x + 1 eli yhtä isompi. Oletuksen perusteella me tiedetään että sigma ( k = 0, x ) { k(k+1) } = x(x+1)(x+2) / 3 ilman mitään ongelmia, ei tarvi ees siivota.