Ero sivun ”Matematiikan kurssit” versioiden välillä
→Sisältö: päivitys: nykyään *on* kurssikirja |
|||
Rivi 45: | Rivi 45: | ||
=== Esitietovaatimukset === | === Esitietovaatimukset === | ||
Varsinaisia esitietovaatimuksia ei ole. Lukiomatematiikkaan tottuneelle aloituskynnys voi kuitenkin olla korkea, joten jonkin kevyemmän kurssin suorittaminen tätä ennen saattaa kannattaa. | Varsinaisia esitietovaatimuksia ei ole. Lukiomatematiikkaan tottuneelle aloituskynnys voi kuitenkin olla korkea, joten jonkin kevyemmän kurssin suorittaminen tätä ennen saattaa kannattaa. Esimerkiksi JYM voi olla hyödyllinen käydä samaan aikaan tai yhtä aikaa. | ||
=== Sisältö === | === Sisältö === |
Versio 15. heinäkuuta 2016 kello 21.27
Tässä esitellään lyhyesti useimmat matematiikan perus- ja aineopintotason kurssit sekä muutama syventävä kurssi. Esitettyjä näkemyksiä ei kannata ottaa absoluuttisina totuuksina, vaan eräiden matematiikkaa poikkeuksellisen paljon sivuaineena opiskelleiden tietojenkäsittelytieteiden opiskelijoiden mielipiteinä.
Perusopinnot
Huom. Vaikka Matematiikan laitos määritteleekin osan kursseista perusopinnoiksi, voi menetelmätieteiden ja matematiikan perusopintokokonaisuuden muodostaa vapaasti muistakin kursseista (esim. sekoittamalla perus- ja aineopintoja).
Matematiikan laitoksella on jostain erikoisesta syystä perusopintotasolla kolme erilaista analyysin kurssia (sekä näiden jatkokurssit). Yleensä pää- ja sivuaineopiskelijat käyvät luentokurssit Analyysi I ja II. Osa on myös suorittanut sivuaineopiskelijoille suunnatun Matemaattisen analyysin kurssin, joka on kuulemma hiukan helpompi. Jos jollain on ajantasaista tietoa näiden eroista, päivittäkää wikiä.
Ajankohtaista huom. Matikan 10 op:n perus- ja aineopintojen kursseja on jaettu kahtia 5 op:n kursseiksi ja nimetty uudelleen alkaen syksystä 2015. Myös tilastotieteen kursseja on nimetty uudelleen (Johdatus todennäköisyyslaskentaan -> Todennäköisyyslaskenta I, Todennäköisyyslaskenta 10 op -> Todennäköisyyslaskenta II, jne. Ks. tilaston tutkintovaatimukset) . Suurempia muutoksia kurssien sisällöissä ei ilmeisesti ole, joten fuksiwikin vanhoja kursseja koskevat neuvot todennäköisesti pätevät edelleen uusiin kursseihin sellaisenaan. Entisten kurssien nimet (suluissa).
Johdatus yliopistomatematiikkaan
5 op, syksy, periodit I ja II
Esitietovaatimukset
Ei ole. Tämä on ehkä suositeltavin ensimmäinen yliopistomatematiikan kurssi käpistelijöille.
Sisältö
Kurssilla tutustutaan eräisiin diskreetin matematiikan osa-alueisiin. Vastaan tulee joukko-oppia, relaatioita, kuvauksia, induktiota, rekursiota sekä perusteita kombinatoriikasta ja verkkoteoriasta.
Soveltuvuus
Tämä on ainoa matematiikan kurssi, joka on tutkintovaatimuksissa kaikille käpistelijöille pakollinen. Tämä on hyvästä syystä, sillä monet kurssin asioista kävelevät vastaan jo monilla fuksivuoden kursseilla. Yksi näistä kursseista on fuksikevään Tietorakenteet ja Algoritmit.
Aihepiiriä käsitellään lisää mm. kursseilla Verkot ja Kombinatoriikka.
Analyysin peruskurssi
10 op, syksy. (Viime vuosina järjestetty 'virtuaalisena' kurssina ts. Moodle-etäkurssina "Analyysin virtuaalinen peruskurssi". Älä sekoita Matemaattisen analyysin kurssiin, ks. alempana.)
Esitietovaatimukset
Mitään esitietovaatimuksia tai -suosituksia ei ole. Analyysin peruskurssi sopii hyvin ensimmäiseksi yliopistomatematiikan kurssiksi.
Sisältö
Analyysin peruskurssi käsittelee suunnilleen samoja aiheita kuin teoreettisempi Analyysi I. Keskeistä sisältöä ovat yhden muuttujan differentiaali- ja integraalilaskenta ja sarjat.
Soveltuvuus
Analyysi I ja II sekä Analyysin peruskurssi käsittelevät olennaisesti samoja asioita, edelliset kaksi syvemmin ja teoreettisemmin, jälkimmäinen taas pintapuolisemmin ja soveltavammin. Kun Analyysiä on viime aikoina helpotettu ja muutettu opiskelijalähtöisemmäksi, se alkaa olla yhä useammalle opiskelijalle Analyysin peruskurssia suositeltavampi vaihtoehto.
Monet ovat nähneet tämän kurssin lähinnä lukiomatematiikan kertauksena, joka ei tarjoa työläyteensä nähden mitään olennaista hyötyä.
Raja-arvot ja Differentiaalilaskenta (aiemmin Analyysi I)
5+5 op, syksy
Esitietovaatimukset
Varsinaisia esitietovaatimuksia ei ole. Lukiomatematiikkaan tottuneelle aloituskynnys voi kuitenkin olla korkea, joten jonkin kevyemmän kurssin suorittaminen tätä ennen saattaa kannattaa. Esimerkiksi JYM voi olla hyödyllinen käydä samaan aikaan tai yhtä aikaa.
Sisältö
Analyysi I käsittelee lukujonoja, raja-arvoja, jatkuvuutta, derivoituvuutta ja alkeisfunktioita. Samalla se toimii johdatuksena matemaattiseen ajatteluun ja todistustekniikoihin. Lähestymistapa on selvästi teoreettisempi kuin mihin lukiossa tottui: reaalilukuihin, jatkuvuuteen ja derivaattaan tutustutaan huolellisesti todistamalla. Opettajien ja tutoreiden varoituksissa on perää; kurssi voi olla raskas ja vaikea. Kysymys ei ole kuitenkaan asioiden vaikeudesta; valtaosa siitä on jo lukiosta tuttua. Vaikeus ja raskaus tulevat lähinnä aloituskynnyksen korkeudesta ja erilaisesta lähestymistavasta. Asiat muuttuvat huomattavasti helpommiksi, jos onnistuu pääsemään yli kulttuurishokista.
Aiemmin luennoijat tapasivat laittaa luentomuistiinpanonsa usein verkkoon (kuten edelleen monilla muilla matikan kursseilla); viime vuosina on käytetty kurssikirjaa Analyysiä reaaliluvuilla (Harjulehto, Klen ja Koskenoja, 2014), saatavilla kampuskirjastosta ja Unigrafialta. Luentojen seuraaminen on Analyysi I:ssä ja II:ssa poikkeuksellisen suositeltavaa (erityisesti jos kirjaa ei hanki), samoin aktiivinen osallistuminen laskuharjoituksiin joko pajassa tai ohjausryhmätapaamisissa (mikä on toki aina suositeltavaa).
Soveltuvuus
Analyysin perusteet kuuluvat tietojenkäsittelytieteilijän matemaattiseen yleissivistykseen. Suoranaisia sovelluskohteita niille löytyy esimerkiksi tietokonegrafiikasta, suorituskykyanalyysista ja signaalinkäsittelystä. Jokin analyysin kurssi olisikin hyvä löytyä jokaisesta matematiikan sivuaineoppimäärästä.
Integraalilaskenta ja Sarjat (aiemmin Analyysi II)
5+5 op, kevät
Esitietovaatimukset
Analyysi I tai vastaavat tiedot.
Sisältö
Kurssin keskeisiä aiheita ovat sarjat ja integrointi. Tavaraa on paljon, uutta asiaa tulee enemmän kuin Analyysi I:ssä ja käsittelyvauhti on nopeahko. Kuitenkin jos selvisi Analyysi I:stä, selviää todennäköisesti tästäkin.
Tieteellinen viestintä / Matematiikan harjoitustyö (ent. Analyysin harjoitustyö)
2 op (aineopintoja, harjoitustyöosuus) + 3 op (matematiikan opiskelijoiden äidinkielen opinnot)
Esitietovaatimukset
Analyysi I ja tarpeeksi (?) matematiikan opintoja
Sisältö
Tieteellinen viestintä on syksynä 2015 uusi pakollinen kurssi matematiikan pääaineopiskelijoille, jonka yhteydessä tehdään Matematiikan harjoitustyö (korvaa entisen Analyysin harjoitustyön). Ilmoituksen mukaan kurssilla käsitellään tieteellisen (matemaattisen) tekstin kirjoittamista, suullista esittämistä, yleisesti tieteellistä julkaisemista, sekä Latexin käyttöä.
Soveltuvuus
Uuden kurssin soveltavuus sivuaineopiskelijoille (erityisesti JTKT:n tehneille käpistelijöille) tämän kirjoittaneelle mysteeri. Entinen analyysin harjoitustyö oli (sivuaineopiskelijoille vapaaehtoinen) hieman tavallista analyysin laskaritehtävää laajempi harjoitustyö, mutta joidenkin (= fuksiwikin aiempien kirjoittajien) mielestä myös sivuaineilijoille hyödyllinen.
tldr. Ei tietoa, luultavasti ei erityisen suositeltava käpistelijöille. (Mutta joku voi halutessaan kokeilla käydä ja kirjoittaa sitten tänne tarkemmin oliko hyödyllinen vai ei).
Matemaattisen analyysin kurssi ja jatkokurssi
10+10 op, syksy+kevät
Esitietovaatimukset
Ei ole. Virallisten esitietovaatimusten mukaan lukion lyhytkin matematiikka riittää.
Sisältö
Sivuaineopiskelijoille (tilasto- ja kansantaloustieteilijöille) suunnattu versio Analyysin kursseista.
Soveltuvuus
Analyysin perusteet kuuluvat tietojenkäsittelytieteilijän matemaattiseen yleissivistykseen.
Lineaarialgebra ja matriisilaskenta I
5 op, syksy ja kesä (avoin)
Esitietovaatimukset
Ei ole. Sopii hyvin ensimmäiseksi matematiikan kurssiksi.
Sisältö
Kurssilla alkaa lineaarisilla yhtälöryhmillä sekä matriisilaskennan perusteilla. Tämän jälkeen siirrytään vektoreihin ja vektoriavaruuksiin. Kurssin tärkeimpiä työkaluja on Gauss-Jordanin eliminointimenetelmä. Tällä ratkotaan useimmat kurssin ongelmat, kuten lineaariset yhtälöryhmät.
Lisäapuja kurssin sisällön suorittamiseen voi kalastaa näistä Gilbert Strangin MIT:n Lineaarialgebran kurssin luentovideoista: http://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
Soveltuvuus
Lineaarialgebran perusteet kuuluvat tietojenkäsittelijän yleissivistykseen. Kurssi on erittäin hyödyllinen, mikäli ei ole ennen tutustunut aihepiiriin. Selkeimpiä sovelluskohteita ovat tietokonegrafiikka ja koneoppiminen.
Lineaarialgebra ja matriisilaskenta II
5 op, syksy ja kesä (avoin)
Esitietovaatimukset
Lineaarialgebra ja matriisilaskenta I
Sisältö
Kurssi jatkaa siitä mihin aiemmassa osassa jäätiin. Keskeisiä käsitteitä ovat aliavaruudet, sisätulot, determinantit ja ominaisarvot.
Soveltuvuus
Kurssi muodostaa kokonaisuuden edeltävän osan kanssa, joten sovelluskohteet ovat samat.
Matematiikka tutuksi
2 op, syksy ja kesä (avoin)
Esitietovaatimukset
Ei ole. Tietojenkäsittelytieteilijöille kurssi soveltuu matematiikan opintojen alussa suoritettuna osaksi matematiikan tai menetelmätieteiden sivuainekokonaisuutta.
Sisältö
Johdattelee yliopistomatematiikkaan. Kurssilla käsitellään pintapuolisesti useita eri matematiikan osa-alueita ja tekniikoita, kuten joukko-oppia, kuvauksia, todennäköisyyslaskentaa ja logiikkaa. Kurssi on aiemmin ollut 5 opintopisteen laajuinen, mutta syksyllä 2015 se muuttui kahteen opintopisteeseen.
Soveltuvuus
Kurssi sopii hyvin matematiikan opintojen alkuun varsinkin, jos matematiikan opiskelusta on pitkä aika.
Aineopinnot
Algebralliset rakenteet I ja II (ent. Algebra I)
5+5 op, kevät
Esitietovaatimukset
Varsinaisia esitietovaatimuksia ei ole. Kurssi on kuitenkin luonteeltaan abstrakti, joten jokin toinen kurssi kannattaa olla pohjalla ennen algebran aloittamista.
Sisältö
Algebra I alkaa logiikan ja lukuteorian alkeilla, minkä jälkeen seuraavat alkeet joukko-opista ja kuvauksista. Näitä käsitellään vain sen verran kuin kurssin aikana tullaan tarvitsemaan. Pääosassa kurssilla ovat algebralliset perusstruktuurit: ryhmät, renkaat ja kunnat. Näillä tarkoitetaan joukkoja, joissa on määritelty tietyt ehdot täyttävät laskutoimitukset. Kurssin ydinasia onkin käsitys siitä, mitä ehtoja laskutoimitusten tulisi täyttää, jotta tutut laskusäännöt olisivat voimassa.
Soveltuvuus
Algebra I antaa valmiuksia symboliseen laskentaan ja korkeamman tason matemaattisten abstraktioiden ymmärtämiseen. Tietokantojen, ohjelmointikielten tai laskennan teoriasta tai symbolisesta tekoälystä kiinnostuneelle kurssi on lähes välttämätön. Muutenkin se on suositeltava matemaattisen ajattelutavan harjaannuttamiseksi.
Ensimmäisen vuoden kurssiksi Algebra I ei useimmille sovi. Aloituskynnys on todennäköisesti liian korkea kurssin teoreettisen luonteen takia. Matemaattiseen ajattelutapaan ja yliopistomatematiikkaan kannattaa siis tutustua ennen kurssin aloittamista.
Todennäköisyyslaskenta I (ent. Johdatus todennäköisyyslaskentaan)
5 op, kevät, periodi III
Esitietovaatimukset
Et pelästy nähdessäsi integraalin; lukion pitkän matematiikan integraalilaskenta oletetaan esitietona. Lukion todennäköisyyslaskennan kurssin asioiden muistaminen ei ole haitaksi, muttei suinkaan välttämätöntä (samat asiat käydään huolellisemmin kurssilla läpi). Tilastotieteen OPS suosittele alle kurssia Johdatus yliopistomatematiikkaan.
Sisältö
Nimensä mukaisesti kyseessä on johdantokurssi todennäkoisyyslaskentaan, erityisesti siinä määrin missä sitä tarvitaan kurssilla Johdatus tilastolliseen päättelyyn (seuraavassa periodissa) ja muilla tilastotieteen perusopinto-tasoisilla kursseilla (data-analyysit jne.).
Kurssilla lähdetään liikkeelle todennäköisyyden käsitteestä (aksioomat) ja todennäköisyyslaskennan alkeista. Lisäksi tutustutaan kombinatoriikan perusteisiin, (yksiulotteisiin) satunnaismuuttujiin ja tavallisimpiin diskreetteihin ja jatkuviin jakaumiin. Laskareissa ollut (ainakin viimeksi järjestyllä kurssilla) MATLAB-tehtäviä.
Suositeltavaa lukemistoa joskus virallisena kurssikirjanakin nähty Pekka Tuomisen Todennäköisyyslaskenta.
Hieman vakavammalla otteella todennäköisyyslaskentaa tehdään aineopintotasoisella 10 nopan kurssilla Todennäköisyyslaskenta II.
Soveltuvuus:TODO
Joku paremmin osaava voi kirjoittaa jotain soveltuvuudesta käpistelyyn. Todennäköisyyslaskennasta on hyötyä ainakin algoritmilinjalla.
Tilastollinen päättely I (ent. Johdatus tilastolliseen päättelyyn)
5 op, kevät, IV periodi
Esitietovaatimukset
Johdatus todennäköisyyslaskentaan (edellisessä periodissa, tämä on melko suora jatkokurssi sille)
Sisältö
Tilastotieteen perusopintoja. Kurssilla on tavattu keskittyä klassisen (frekventistinen tulkinta) tilastotieteen perusteisiin (binomikoe, otos, uskottavuus, estimointiteoriaa, luottamusvälit, tilastolliset testit, pienimmän neliösumman menetelmä ja lineaarinen regressio), mutta kurssin lopulla myös hieman Bayes-päättelyn alkeita.
Vaihtoehtoisesti voi harkita valtiotieteellisen kursseja Johdatus yhteiskuntatilastotieteeseen ja Tilastotieteen jatkokurssi, jotka ovat matemaattisesti hieman kevyemmät ja sovellushenkisempiä. Kannattaa tutustua tutkintovaatimuksiin: https://wiki.helsinki.fi/display/Tilastotiede/Tilastotieteen+tutkintovaatimukset+sivuaineopiskelijoille+2014-2016
Soveltuvuus: TODO
Ks. Johdatus todennäköisyyslaskentaan. (?).
Kombinatoriikka
5 op, satunnaisesti
Esitietovaatimukset
Johdatus diskreettiin matematiikkaan.
Sisältö
Kurssilla keskitytään nimenomaan enumeratiiviseen kombinatoriikkaan, jossa lasketaan erilaisten äärellisten joukkojen ominaisuuksia. Esimerkkejä käsiteltävistä ongelmista ovat "kuinka monta tapaa on jakaa 5 kortin käsiä korttipakasta" tai "kuinka monella tavalla n hengen ryhmä voidaan jakaa k hengen joukkueisiin". Keskeisiä käsitteitä ovat permutaatiot, kombinaatiot ja binomikertoimet.
Ajoittain kurssilla tarkastellaan myös käpistelijöitä kiinnostavia verkko-ongelmia, kuten riippumattomia joukkoja, klikkejä ja verkon värityksiä.
Soveltuvuus
Useimmat tietojenkäsittelytieteen laskennalliset ongelmat ovat nimenomaan kombinatorisia (optimointi)ongelmia, joten kurssi on hyödyllinen varsinkin algoritmiikasta kiinnostuneille.
Lukualueet
3 op, syksy
Esitietovaatimukset
Ei ole, sillä kurssi täydentää lähinnä täydentää lukiomatematiikan tietoja kompleksilukujen osalta.
Sisältö
Kurssilla keskitytään lähinnä kompleksilukuihin, näiden peruslaskutoimituksiin (yhteenlasku, kertolasku ja liittoluvut) sekä geometriseen tulkintaan. Kurssi on melko helppo ja se suoritetaan perinteisesti pelkästään laskaritehtävillä.
Soveltuvuus
Kurssilla ei esitellä edes kompleksilukujen matemaattisia sovelluksia eikä siis myöskään tietojenkäsittelytieteen kannalta relevantteja asioita juuri tule. Kurssi kuitenkin sopii matematiikan opintojen alkuun leppoisan luonteensa vuoksi.
Johdatus logiikkaan I
5 op, kevät
Esitietovaatimukset
Ei ole. Tällä kurssilla pärjännee hyvin lyhyenkin matematiikan pohjalta, vaikka matemaattinen ajattelu onkin tarpeen. Kannattaa muistaa, että filosofeillakin on omat pakolliset logiikan kurssinsa, jotka pureutuvat yhdessä syvemmälle kuin tämä peruskurssi.
Sisältö
Moni aineopintotason kurssi käsittelee logiikan perusteita, mutta Johdatus logiikaan on ainoa, joka esittää ne kattavasti. Pääpaino on ensimmäisessä osassa on propositiologiikassa jossa operoidaan pelkillä vakiosymboleilla. Muutaman keskeisen teoreettisen tuloksen ohella käsitellään varsin kattavasti totuustaulut, resoluutio, semanttiset puut ja luonnolliseksi päättelyksi kutsuttu järjestelmä, joka on toisinaan käsittämättömän kömpelö. (Luonnollisessa päättelyssä yritetään johtaa jokin lause tehdyistä oletuksista. Semanttisia puita käytettäessä puolestaan selvitetään, millä ehdoilla annettu lause on tosi.)
Hannele Salmisen ja Jouko Väänäsen kirja Johdatus logiikkaan on kaksipiippuinen juttu. Joiltain osiltaan se soveltuu hyvin itseopiskeluun ja mahdollistaa selvästi kurssia nopeamman etenemisen. Toisaalta kun vastaan tulee "induktiolla lauseen rakenteen suhteen", on aika hakata päätä seinään. Samat asiat olisi voinut todistaa huomattavasti selkeämmälläkin tavalla.
Soveltuvuus
Nykymatematiikka perustuu logiikkaan. Tietojenkäsittelytiede lähti liikkeelle loogikoiden ajatusleikeistä. Eksakti ajattelu ja formaali esitystapa täytyy hallita, jos haluaa pärjätä tietojenkäsittelytieteen opinnoissa. Esimerkiksi tietokantojen ja ohjelmointikielten teoria sekä perinteinen tekoäly ovat täynnä logiikkaa. Lienee siis varsin luonnollista, että logiikka kuuluu jokaisen käpistelijän yleissivistykseen.
Usein suositellaan esitietokurssiksi jos matemaattinen logiikka (esim. samanniminen syventävä kurssi) kiinnostaa enemmänkin (mutta tästä kuulee joskus eriäviä mielipiteitä, joten tiedä häntä; ehkä kuitenkin suositeltavaa käydä tämä ennen kuin marssii maisterivaiheen logiikkaan ellei ole erityisen rohkea olo.)
Johdatus logiikkaan II
5 op, kevät
Esitietovaatimukset
Sisältö
Predikaattilogiikkaa.
Mitta ja integraali
6 op, kevät
Esitietovaatimukset
Vektorianalyysi. Topologia I:tä suositellaan vieläkin vahvemmin kuin Vektorianalyysin yhteydessä.
Sisältö
Janan luonnollinen mitta on sen pituus, tasokuvion mitta pinta-ala ja kolmiulotteisen kappaleen mitta tilavuus. Tällä kurssilla yleistetään mitan käsite ja tarkastellaan erityisesti Lebesguen mittaa, joka perustuu luonnolliseen geometriseen mittaan. Mittateorian käsittelyn jälkeen määritellään integroituvuus ja integraali kaikissa mitallisissa joukoissa ja todistetaan monia integraalien ominaisuuksia, joita olisi hankala käsitellä aikaisempien määritelmien perusteella.
Soveltuvuus
Mitta ja integraali on analyysin syventävien opintojen peruskurssi. Jos aikoo suorittaa matematiikassa syventävien opintojen sivuainekokonaisuuden, tämä on eräs suositeltavimmista kursseista erikoistumissuunnasta riippumatta. Erityisesti jos aikoo perehtyä todennäköisyyslaskentaan syvällisesti, kuten älykkäiden järjestelmien kohdalla on usein tarpeen, mittateoria tulee hallita.
Topologia I
10 op, kevät
Esitietovaatimukset
Analyysi I. Kurssi on luonteeltaan abstrakti, joten muidenkin matematiikan kurssien käyminen ennen tätä on suositeltavaa.
Sisältö
Avoimuuden, jatkuvuuden ja raja-arvon käsitteet yleistetään metrisissä ja normiavaruuksissa, minkä jälkeen johdetaan suuri joukko lähinnä intuitiivisia tuloksia. Kurssi on luonteeltaan teoreettinen ja abstrakti samaan tapaan kuin Algebra I. Monet voivat kokea tämän kurssin vaikeutena, mutta tässäkin tapauksessa kysymys on ennemminkin korkeasta kynnyksestä kuin asioiden vaikeudesta. Mitä enemmän matematiikkaa on opiskellut ennen Topologia I:tä, sitä matalammaksi kynnys käy, kun tottuu asioiden käsittelyyn yleisellä tasolla. Jussi Väisälän kirja Topologia I sopii hyvin itseopiskelumateriaaliksi.
Kurssi käsittelee oikeastaan enemmän analyysin peruskäsitteitä kuin topologiaa. Voidaan perustellusti sanoa, että Topologia I suhtautuu topologiaan samalla tavalla kuin Diskreetti I diskreettiin matematiikkaan.
Soveltuvuus
Topologia I on kurssi, joka on tarkoitettu lähinnä helpottamaan analyysin opiskelua. Tietojenkäsittelytieteen opinnoissa siitä ei ole juuri apua, ellei sitten tietokonegrafiikassa ja laskennallisessa geometriassa. Jos kuitenkin aikoo suorittaa matematiikassa syventävät opinnot, tämä kurssi on hyvä sisällyttää oppimäärään.
Vektorianalyysi I ja II(ent. Vektorianalyysi)
5+5 op, syksy
Esitietovaatimukset
Analyysi I ja II sekä Lineaarialgebra ja matriisilaskenta I ja II. Myös Topologia I:n tiedoista on hyötyä.
Sisältö
Vektorianalyysi käsittelee useamman muuttujan differentiaali- ja integraalilaskentaa. Lähestymistapa on käytännöllisempi kuin Analyysi I+II:ssa, mikä on ymmärrettävää. Merkittävä osa yhden muuttujan funktioiden teoriasta yleistyy nimittäin vähällä vaivalla useamman muuttujan funktioille, joten samaa asiaa ei kannata käsitellä uudestaan yhtä tarkasti. Kannattaa huomioida, ettei kurssin suomenkielistä oppikirjaa ole ollut saatavilla enää vähään aikaan, vaan opiskelija joutuu joko turvautumaan kopiokoneeseen tai metsästämään itse vastaavaa kirjallisuutta.
Soveltuvuus
Vektorianalyysi ei ole enää samalla tavalla yleissivistystä kuin Analyysi I ja II. Kurssin tietoja tarvitaan samoilla aloilla kuin analyysin perusteitakin, mutta esimerkiksi ohjelmistotekniikkaan tai käyttöliittymiin erikoistuvalle niistä ei ole suurempaa hyötyä.
Vektorianalyysia voi suositella lähinnä tutkijoiksi aikoville sekä teoreettisemmille aloille erikoistuville. (Esim. algolinjan Introduction to Machine Learning -kurssilla tämä on hyödyllinen tosin ei välttämätön esitieto.) Erityisesti osittaisderivaatat ja gradientin käsite (kurssin ensimmäin puolisko) ovat hyödyllisiä vähän kaikkialla (esim. optimointialgoritmit), ja yleisesti vektorianalyysin työkaluista on hyötyä jos törmää moniulutteisiin tn-jakaumiin (monet tilastotieteen käytännön sovelluskohteet, esimerkiksi juuri koneoppimisen alalla).
Matematiikasta syventävien opintojen kokonaisuuden lukevien kannattaa erityisesti käydä Vektorianalyysi.
Verkot
5 op, satunnaisesti
Esitietovaatimukset
Johdatus diskreettiin matematiikkaan.
Sisältö
Kurssi on jatkoa JDM-kurssille. Kurssilla esitellään verkkoteorian peruskäsitteitä ja -tuloksia. Keskeisiä käsitteitä ovat suuntaamattomat ja suunnatut verkot (suhteikot), puut sekä erilaiset kulut (Hamiltonin ja Eulerin).
Soveltuvuus
Kurssi soveltuu erittäin hyvin tietojenkäsittelytieteilijöille, sillä verkot ovat kenties tietojenkäsittelytieteen yleisimpiä struktuureja ja malleja (kuten Tietorakenteet kurssilta tulee tutuksi).
Kurssin aiemmasta versiosta sanottua: Alaa tuntematon olettaisi verkkoteoriaa tarvittavan tietojenkäsittelytieteessä lähinnä tietoverkkojen puolella. Niissäkin sitä tarvitaan, mutta viimeistään Tietorakenteet-kurssilla pitäisi huomata, kuinka laajalti verkkoja tietojenkäsittelytieteessä käytetään. Lienee siis ymmärrettävää, että kurssi on suositeltava kaikille tietojenkäsittelytieteen matemaattisista perusteista kiinnostuneille ja ennen kaikkea algoritmien erikoistumislinjan valinneille.
Applications of Matrix Computations
(a.k.a. Matriisilaskennan sovellukset) 5 op, syksy
Esitietovaatimukset
Lineaarialgebra I + II. Muista matematiikan kursseista ei haittaakaan.
(Matlab / Octave -ohjelmointitaustaa suositellaan, mutta lähinnä siksi ettei sitä opeteta kädestä pitäen. Käpistelijälle jolla on jo hieman ohjelmointitaustaa, Matlab-syntaksin oppiminen siinä missä sitä kurssilla tarvitaan luulisi olevan ihan mahdollista.)
Sisältö
Lineaarialgebran ja matriisilaskennan sovelluskurssi ts. Matlab-ohjelmointia.
Suositeltava kurssi, jos Linisten jälkeen kiinnostaa mihin sitä lineaarialgebraa sitten oikeastaan voi käyttää. Tarkempi fokus ollut joskus hieman sekalainen ja muutenkin vähän vaihdellut luennoitsijan mielenkiinnon mukaan, viimeisimmällä iteraatiolla (syksyllä 2014) keskityttiin kuvankäsittelyyn. Muita usein nähtyjä aiheita: numeerista integrointia, Markovin ketjuja, Googlen PageRank-algoritmi, wavelet- / Fourier-muunnoksia (FFT), pääkomponenttianalyysia, ominaisarvoja ja matriisihajotelmia.
Verrattuna johonkin abstraktimpaan kurssiin (joku Topo I tulee mieleen), kurssi on varsin käytännönläheistä soveltavaa matematiikkaa ja ohjelmointia.
Poikkeuksellisesti muihin matematiikan kursseihin verrattuna, kurssilla ei ole tavattu käyttää kurssikirjaa eikä myöskään kannata odottaa kattavia luentomuistiinpanoja nettiin, eli luennoilla kannattaa käydä!
Soveltavuus
Ei ollenkaan huono kurssi matikan laajempaan sivuaineeseen Linis I+II:n jatkoksi, jos soveltava matematiikka kiinnostaa. Jotain viitettä voi antaa, että kyseessä on matikan pääaineilijoille eräänlainen epävirallinen (?) porttikurssi tietokoneavusteisen matikan maisterilinjalle.
Syventävät opinnot
Kuilu syventävien ja aineopintojen välillä on usein suuri, joten syventäville kursseille ei kannata rynnätä kylmiltään. Usein esimerkiksi Matemaattisen logiikan linjan kursseilla ei ole erityisiä esitietovaatimuksia, mutta opiskelijoilla oletetaan olevan "matemaattista yleissivistystä tai kypsyyttä". Käytännössä tämä tarkoittaa, että esim. aineopintoja on jo suoritettuna eikä matemaattinen ajattelu ole vierasta.
Matematiikasta voi suorittaa 60 op laajuisen syventävien opintojen kokonaisuuden käymällä 40 opintopisteen edestä syventäviä kursseja ja kirjoittamalla 20 op arvoisen sivuainetutkielman (ns. "sivuainegradu").
Laskettavuuden teoria
10 op, satunnaisesti
Esitietovaatimukset
Varsinaisia esitietovaatimuksia ei ole, mutta matemaattisen ajattelutavan on syytä olla tuttu. Erityisesti Matemaattisesta logiikasta ja TKTL:n kurssista Laskennan mallit on hyötyä.
Suositeltavaa on, että aineopintojen kursseja on jo jonkin verran takana, sillä kurssilla ajoittain esitellään yhteyksiä mm. logiikkaan ja topologiaan (tosin esitiedot näistä eivät ole välttämättömiä).
Sisältö
Laskettavuutta, ratkeavuutta ja rekursiivisuutta matemaatikon näkökulmasta. Turingin koneiden ja ohjelmien sijaan lähtökohtina ovat rekursiiviset funktiot ja eräänlainen RAM-kone. Monet asiat saadaan todistettua tyylikkäämmin tai helpommin kuin TKTL:n Laskennan teoriassa. Syksyn 2002 kurssi perustui Väänäsen 80-luvulla tekemiin luentomuistiinpanoihin, kuten myös kevään 2010 kurssi.
Soveltuvuus
Mielipide 1: Tämän kurssin käymisestä ei ole yhtään mitään hyötyä. Jos laskennan teoria jostain syystä kuitenkin kiinnostaa, tämän kurssin käyminen on ehdottoman suositeltavaa jo yksin sen tarjoaman vaihtoehtoisen lähestymistavan takia.
Mielipide 2: Kurssi on erittäin hyödyllinen ottaen huomioon sen, että Tietojenkäsittelytieteen laitoksella ei enää juurikaan opeteta kurssia Laskennan teoria. Muutenkin laskennan teoriaa käsitellään vain lyhyesti Laskennan mallit -kurssilla. Jatkokurssiksi sopii myös Vaativuusteoria.
Matemaattinen logiikka
10 op, syksy
Esitietovaatimukset
Varsinaisia esitietovaatimuksia ei ole. Käytännössä logiikan perustietojen hallitseminen esimerkiksi kurssilta Logiikka I on lähes välttämätöntä, eikä muidenkaan kurssien käyminen ole ainakaan haitaksi. Kysymys on joka tapauksessa syventävien opintojen kurssista, joten matemaattisen ajattelutavan omaksumista voidaan pitää välttämättömänä edellytyksenä kurssille osallistumiseen.
Sisältö
Periaatteessa kurssin sisältö vastaa hyvin Jouko Väänäsen kirjaa Matemaattinen logiikka, mutta käänteisessä järjestyksessä. Läpi käydään jo logiikan peruskurssilla tutuksi tulleet logiikan perusteet hieman teoreettisemmasta (ja monien mielestä keinotekoisesti vaikeutetusta) näkökulmasta. Myöhemmin kurssilla törmätään muun muassa rekursiivisiin funktioihin ja laskettavuusteoriaan. Mielipiteitä on monia, mutta ainakin omasta mielestäni kirjan lähestymistapa on mielekkäämpi kuin kurssilla viime aikoina käytetty.
Soveltuvuus
Matemaattista logiikkaa voidaan suositella ennen kaikkea logiikasta kiinnostuneille. Syventävien opintojen kurssien joukossa se lienee sieltä helpoimmasta päästä, vaikka loogikoille tyypillisen käsittämätön notaatio yrittääkin parhaansa mukaan sabotoida ymmärrystä. Hyötyä kurssista saattaa olla, jos esimerkiksi laskennan teoria, tietokantojen mallinnus, ohjelmointikielten periaatteet tai perinteinen tekoäly kiinnostavat.
Reaalianalyysi I
6 op, kevät
Esitietovaatimukset
Sisältö
Reaalianalyysi I käsittelee reaalianalyysin perusteita teoreettiselta näkökannalta. Samaan aikaan luennoidaan myös Sovelletun analyysin perusteet, joka lienee suunnattu enemmän differentiaaliyhtälöitä tietokoneilla ratkoville soveltaville matemaatikoille. Teoreettisen lähestymistavan huomaa esimerkiksi siitä, että vaikka kurssilla oppii uusia asioita, saattaa käsitys joidenkin niistä merkityksestä jäädä puuttumaan.
Siinä missä Mitta ja integraali keskittyi integrointiin, laajennetaan tällä kurssilla derivoinnin ja derivaatan käsitettä. Lisäksi käsitellään Lp-avaruuksia sekä absoluuttisesti jatkuvia, rajoitetusti heilahtelevia ja muita "kiltisti" käyttäytyviä funktioita. Kurssia vaivaa lievä päämäärättömyys, vaikka monet käsiteltävät asiat ovatkin aikaisemmilla kursseilla saatujen tulosten yleistyksiä.
Soveltuvuus
Reaalianalyysi I on luontevaa jatkoa Mitalle ja integraalille, joten samat perustelut pätevät senkin kohdalla. Toinen jatkovaihtoehto Mitan ja integraalin jälkeen olisi* Sovelletun analyysin perusteet, mutta minulla ei ole käsitystä sen sisällöstä tai soveltuvuudesta (*tai ainakin oli joskus, tämän kirjoittaja ei ole nähnyt tuonnimistä kurssia luennoitavan enää).
Todennäköisyysteoria
10 op, kevät
Esitietovaatimukset
Mitta ja integraali ja Todennäköisyyslaskenta I.
Sisältö
Lyhyesti sanottuna Todennäköisyysteoriassa käsitellään todennäköisyyslaskentaa mittateorian pohjalta. Kurssi on laudatur-kurssiksi siinä mielessä helppo, että jos mittateoria ja todennäköisyyslaskenta ovat ennestään tuttuja, niiden yhdistäminen tapahtuu varsin intuitiivisesti. Uusia käsitteitä ei tule kovinkaan paljon Todari I:n päälle, vaan kysymys on ennemminkin pohjan rakentamisesta aiemmin opitun alle.
Soveltuvuus
Todari II on hyödyllinen kurssi erityisesti älykkäiden järjestelmien linjalla, jossa kaikki perustuu oikeastaan tilastotieteeseen ja todennäköisyyslaskentaan. Todari I:ssä opittiin lähinnä soveltamaan todennäköisyyslaskentaa, kun taas tällä jatkokurssilla päästään käsiksi asian ytimeen ja opitaan ehkä ymmärtämäänkin sitä.
Vaativuusteoria
10 op, satunnaisesti
Esitietovaatimukset
Kurssilla ei ole varsinaisia esitietovaatimuksia, mutta koska kyse on syventävästä matematiikan kurssista on suositeltava käydä tarpeeksi aineopintojen kursseja ennen. Erityisesti Logiikka I ja Algebra I ovat hyödyllisiä.
Sisältö
Kurssilla käsitellään nimensä mukaisesti vaativuusteoriaa, joka tutkii kuinka vaikeita erilaiset laskennalliset ongelmat ovat. Kurssilla käytetään mallina TKTL:n Laskennan mallit -kurssilta tuttua Turingin konetta sekä esitellään tunnetuimmat vaativuusluokat P, NP ja PSPACE. Lisäksi käsitellään NP-täydellisyyttä ja PSPACE-täydellisyyttä. Lopuksi tutustutaan säännöllisiin kieliin ja äärellisiin tilakoneisiin (tällä kurssilla erikoistapaus Turingin koneesta).
Kurssilla saatetaan myös esitellä lyhyesti deskriptiivistä vaativuusteoriaa, jolloin (matemaattisen) logiikan kursseista on hyötyä.
Soveltuvuus
Kurssin aihepiiri kuuluu tietojenkäsittelytieteilijöiden yleissivistykseen. Kurssin lähestymistapa on kuitenkin hyvin matemaattinen (todistukset tehdään tarkasti ilman käsien heiluttelua), joka saattaa olla vierasta käpistelijöille. Lisäksi kurssin tekniikat ovat usein tästä syystä melko matalalla tasolla, joten varsinaista yleiskuvaa vaativuusteoriasta ei saa, mutta vahvat perustiedot kylläkin.
Verkkoteoria
10 op, suoritetaan loppukokeella
Huom. Tämä ei ole sama kurssi kuin Verkot.
Esitietovaatimukset
Tiukkoja esitietovaatimuksia ei ole, mutta Diskreetti matematiikka II on vahvasti suositeltava. Koska kysymys on laudatur-erikoiskurssista, kurssilla oletetaan useimpien alojen perusteet tutuiksi. Logiikan, lineaarialgebran, topologian ja todennäköisyyslaskennan alkeiden osaaminen on hyödyksi.
Sisältö
Tämä kurssi käsittelee nimensä mukaisesti verkkoteoriaa Diestelin kirjan Graph Theory pohjalta. Diskreetti II:ssa käsitellyt asiat ohitetaan nopeasti ensimmäisessä luvussa, minkä jälkeen käsitellään syvemmin parituksia, yhtenäisyyttä, tasoverkkoja, värityksiä, satunnaisverkkoja ja Ramseyn teoriaa. Laudatur-kurssin oppimateriaaliksi kirja on poikkeuksellisen selkeä ja ymmärrettävä.
Soveltuvuus
Matematiikan laudatur-erikoiskurssille tuleva toivottavasti tietää mitä sieltä on hakemassa. Verkkoteoria selventää jonkin verran esimerkiksi Algoritmien suunnittelussa ja analyysissa vastaan tulevia käsitteitä, mutta hyöty ei ole kovinkaan suuri. Kuitenkin jos matematiikka kiinnostaa, sitä kannattaa opiskella kun siihen on mahdollisuus.
Vanhat kurssit
Alla olevia kursseja ei enää luennoida tai ne ovat korvautuneet muilla kursseilla. Useimmat vanhoista kursseista, kuten Lineaarialgebra ja Diskreetti matematiikka II on pilkottu kahteen osaan, joten näkemykset näistä vanhoista kursseista pätevät jossain määrin myös uudempiin kursseihin. Asiasisältö ei varsinaisesti ole vuosien varrella muuttunut.
Diskreetti matematiikka I
10 op, kevät
Huom: Kurssin korvaa lukuvuodesta 2005-2006 alkaen Johdatus diskreettiin matematiikkaan
Esitietovaatimukset
Ei ole. Kaikista matematiikan kursseista tämä lienee se kevyin ja helpoin.
Sisältö
Diskreetti matematiikka I ei käsittele niinkään diskreettiä matematiikkaa kuin matematiikan perusteita. Alkeet käsitellään niin logiikasta, joukko-opista, relaatioista, funktioista, kombinatoriikasta, induktiosta kuin rekursiostakin. Kurssi tarjoaa näin helpon tien matemaattisen ajattelun kehittämiseen ja madaltaa näin monien matematiikan ja teoreettisen tietojenkäsittelytieteen kurssien aloituskynnystä.
Soveltuvuus
Tämä on se kurssi, jolla jokaisen käpistelijän kannattaisi matematiikan opintonsa aloittaa. Valitettavasti Diskreetti I luennoidaan jostain käsittämättömästä syystä keväisin. Luentomoniste on kuitenkin poikkeuksellisen selkeä, joten yksi vaihtoehto on hankkia se ja käydä tenttimässä kurssi jo marraskuun alun yleistentissä.
Diskreetti matematiikka II
10 op, syksy
Huom: Kurssit Kombinatoriikka ja Verkot korvaavat yhdessä tämän kurssin.
Esitietovaatimukset
Varsinaisia esitietovaatimuksia ei ole. Kurssin käsittelytapa on kuitenkin teoreettinen ja perusasiat ohitetaan nopeasti, joten ensimmäiseksi kurssiksi Diskreetti II:ta ei kannattane ottaa. Diskreetti matematiikka I lienee edeltävistä kursseista hyödyllisin, mutta myös muilla kursseilla omaksuttu matemaattinen ajattelu auttaa.
Sisältö
Diskreetti matematiikka II käsittelee varsinaisen diskreetin matematiikan osa-alueista kombinatoriikkaa ja verkkoteoriaa, jättäen automaattiteorian ja formaalit kielet tietojenkäsittelytieteen kursseille. Kombinatoriikassa mennään pidemmälle kuin muilla cumu-kursseilla (Diskreetti I ja Todennäköisyyslaskenta I), vaikka perusteisiin edelleen jäädäänkin. Verkkoteoriaa käsitellään noin puolet kurssista, mutta tässäkään ajassa ei ehditä peruskäsitteitä ja -tuloksia pidemmälle. Kurssi perustuu verkosta saatavilla olevaan luentomonisteeseen, joka on matematiikan luentomonisteeksi suhteellisen luettava.
Soveltuvuus
Alaa tuntematon olettaisi verkkoteoriaa tarvittavan tietojenkäsittelytieteessä lähinnä tietoverkkojen puolella. Niissäkin sitä tarvitaan, mutta viimeistään Tietorakenteet-kurssilla pitäisi huomata, kuinka laajalti verkkoja tietojenkäsittelytieteessä käytetään. Lienee siis ymmärrettävää, että Diskreetti II on suositeltava kurssi kaikille tietojenkäsittelytieteen matemaattisista perusteista kiinnostuneille ja ennen kaikkea algoritmien erikoistumislinjan valinneille.
Lineaarialgebra I
10 op, syksy
Huom: Uudet kurssit Lineaarialgebra ja matriisilaskenta I (5 op) ja II (5 op) korvaavat yhdessä tämän kurssin.
Esitietovaatimukset
Ei ole. Lineaarialgebra I on kurssina sieltä helpommasta päästä ja tuntuu lähes suoralta jatkolta lukiomatematiikalle.
Sisältö
Linis I alkaa lineaarisilla yhtälöryhmillä, joista edetään matriiseihin. Tämän jälkeen ovat vuorossa vektorit, vektoriavaruudet ja sisätulot. Lopuksi käsitellään vielä lineaarikuvauksia ja determinantteja. Käsittelytapa on yliopistokurssiksi usein suhteellisen käytännöllinen ja muistuttaa siten lukiomatematiikkaa. Teoriakin esitetään, mutta laskumenetelmät ovat etusijalla. Vaikeinta lienee kurssilla käytettävän kielen sisäistäminen — lineaarialgebrassa kun on matematiikaksi poikkeuksellisen paljon uusia termejä. Moni asia kurssilla ratkeaa yhdistämällä matriisit ja muuttamalla näin saatu matriisi redusoituun porrasmuotoon Gauss-Jordanin eliminointimenetelmällä.
Soveltuvuus
Lineaarialgebra kuuluu käpistelijän matemaattiseen yleissivistykseen, vaikkakaan ei yhtä vahvasti kuin analyysin perusteet. Tietokonegrafiikka on selkein sovelluskohde, mutta muitakin löytyy. Tiedonhallinnan syventävillä kursseilla sitä tulee kuulemma tämän tästä vastaan. Toisaalta vektorit ja matriisit tarjoavat kätevän tavan esittää matemaattisesti, että samat tai samankaltaiset operaatiot suoritetaan kerralla useille alkioille.
Lineaarialgebra II
10 op, syksy
Esitietovaatimukset
Lineaarialgebra I. Lisäksi Algebra I on vahvasti suositeltava.
Sisältö
Tällä kurssilla käsitellään lineaarialgebraa abstraktimmalla tasolla kuin Linis I:ssä. Vektoriavaruuksien tilalla ovat nyt modulit, jollainen muodostuu yhdistämällä sopivasti Algebra I:stä tuttuja ryhmiä ja renkaita. Matematiikan laitos tuntuu edustavan lineaarialgebrassa sitä pedagogista suuntausta, että asiat opetetaan ensin konkreettisten esimerkkien avulla ja tämän jälkeen käsitellään asiat uudelleen yleisemmällä ja abstraktimmalla tasolla.
Oppimateriaalin valintaan kannattaa kiinnittää tavallista enemmän huomiota. Esimerkiksi syksyn 1999 luentomoniste hukuttaa lukijansa syntaktiseen suohon, eikä yleensä vaivaudu kertomaan, mitä käsitteet itse asiassa tarkoittavat. Matematiikkaa on kyllä mahdollista opiskella pelkkänä symbolisena manipulointina ymmärtämättä asioita lainkaan, mutta tällaisen lähestymistavan hyöty on vähintäänkin kyseenalainen.
Soveltuvuus
Lineaarialgebra II on syventävien opintojen kurssi, joten suoranaista hyötyä käpistelijälle on vaikea löytää. Jos aikoo erikoistua sellaisen alan teoriaan, millä tarvitaan lineaarialgebraa, kurssin käyminen on perusteltua. Muuten sitä voi suositella lähinnä heille, jotka ovat kiinnostuneita matematiikasta sen itsensä takia.
Optimointi I
10 op, syksy
Esitietovaatimukset
Differentiaalilaskentaa esimerkiksi kurssilta Analyysin peruskurssi tai Analyysi I ja II, sekä Lineaarialgebra I. Useamman muuttujan differentiaalilaskennasta kurssilta Vektorianalyysi on hyötyä, jos on käynyt Analyysi I+II:n Analyysin peruskurssin asemasta, mutta vektorianalyysin käyminen rinnakkain optimoinnin kanssa riittää.
Sisältö
Lineaarista ja kvadraattista optimointia ja vastaavia kuljetusongelmia. Kurssi käsittelee lähinnä perusteoriaa ja perusmenetelmiä, joista keskitytään lähinnä simplex-algoritmiin. Tarkempaa kuvausta en osaa antaa, sillä jätin kurssin kesken puolenvälin aikoihin motivaation puutteen takia. Lineaarista optimointia on tapana suorittaa tietokoneilla, ei kynällä ja paperilla.
Soveltuvuus
Ennen kaikkea tarvitaan istumalihaksia, sillä laskuharjoitukset sisältävät runsaasti mekaanista laskentaa. Ne ovat kuitenkin käytännössä välttämättömiä, sillä algoritmien toiminnan sisäistäminen on olennainen osa kurssia. Jos numeerinen matematiikka tai tieteellinen laskenta kiinnostaa, on Optimointi I varmastikin hyödyllinen kurssi.
Todennäköisyyslaskenta I
10 op, kevät
Huom: Uudet kurssit Johdatus todennäköisyyslaskentaan (5 op) ja Johdatus tilastolliseen päättelyyn (5 op) korvaavat yhdessä tämän kurssin.
Esitietovaatimukset
Joko Analyysi I ja II tai Analyysin peruskurssi. Kurssista Vektorianalyysi on myös jonkin verran hyötyä, sillä Todennäköisyyslaskenta I:ssä tarvitaan paikoin hieman useamman muuttujan integraalilaskentaa.
Sisältö
Todennäköisyyslaskennan perusteita varsin käytännönläheisellä tasolla. Teoria jää usein vaille todistuksia, jotka edellyttäisivät mittateoriaa esimerkiksi kurssin Mitta ja integraali laajuudessa. Todennäköisyyslaskennan alkeiden lisäksi käsitellään satunnaismuuttujia, kombinatoriikkaa sekä tavallisimpia diskreettejä ja jatkuvia jakaumia. Kurssin sisältö vaihtelee suuresti luentokertojen välillä, mutta Pekka Tuomisen kirja Todennäköisyyslaskenta on aina vähintäänkin hyvää oheislukemistoa.
Soveltuvuus
Todennäköisyyslaskentaa tarvitaan tietojenkäsittelytieteessä esimerkiksi rinnakkaisjärjestelmien ja algoritmien analysoinnissa sekä älykkäissä järjestelmissä. Sen suorittaminen onkin suositeltavaa, jos aikoo opiskella matematiikkaa minimilaajuista perusopintokokonaisuutta enempää.