Ero sivun ”Satunnainen esimerkki induktiotodistuksesta” versioiden välillä
Ei muokkausyhteenvetoa |
Ei muokkausyhteenvetoa |
||
Rivi 7: | Rivi 7: | ||
Kakkosvaihe: oletetaan että toimii kun n = x jollekin x (ja me tiedetään että jollakin x se toimii koska just todistettiin että vaikkapa x = 0 toimii). Todistetaan tän pohjalta että toimii myös kun n = x + 1 eli yhtä isompi. | Kakkosvaihe: oletetaan että toimii kun n = x jollekin x (ja me tiedetään että jollakin x se toimii koska just todistettiin että vaikkapa x = 0 toimii). Todistetaan tän pohjalta että toimii myös kun n = x + 1 eli yhtä isompi. | ||
Oletuksen perusteella me tiedetään että | Oletuksen perusteella me tiedetään että (korvataan n = x) | ||
sigma ( k = 0, x ) { k(k+1) } = x(x+1)(x+2) / 3 ilman mitään ongelmia, ei tarvi ees siivota. | sigma ( k = 0, x ) { k(k+1) } = x(x+1)(x+2) / 3 ilman mitään ongelmia, ei tarvi ees siivota. | ||
Nyt me halutaan todistaa että (korvataan n = x+1) | |||
sigma ( k = 0, x+1 ) { k(k+1) } = (x+1)((x+1) + 1)((x+1) + 2) / 3 | |||
</pre> | </pre> |
Versio 5. syyskuuta 2007 kello 21.25
Ykkösvaihe: todistetaan että toimii kun n=0: sigma ( k = 0, 0 ) { k(k+1) } = 0(0+1)(0+2) / 3 0(0+1) = 3/3 1 = 1 Kakkosvaihe: oletetaan että toimii kun n = x jollekin x (ja me tiedetään että jollakin x se toimii koska just todistettiin että vaikkapa x = 0 toimii). Todistetaan tän pohjalta että toimii myös kun n = x + 1 eli yhtä isompi. Oletuksen perusteella me tiedetään että (korvataan n = x) sigma ( k = 0, x ) { k(k+1) } = x(x+1)(x+2) / 3 ilman mitään ongelmia, ei tarvi ees siivota. Nyt me halutaan todistaa että (korvataan n = x+1) sigma ( k = 0, x+1 ) { k(k+1) } = (x+1)((x+1) + 1)((x+1) + 2) / 3