Ero sivun ”Satunnainen esimerkki induktiotodistuksesta” versioiden välillä

Fuksiwikistä
Ei muokkausyhteenvetoa
Ei muokkausyhteenvetoa
Rivi 37: Rivi 37:


x(x+1)(x+2)/3 + sigma ( k = x+1, x+1 ) { k(k+1) }.
x(x+1)(x+2)/3 + sigma ( k = x+1, x+1 ) { k(k+1) }.
Kakkosvaiheen väite oli siis että tämä hirviö olisi sama kuin (x+1)((x+1) + 1)((x+1) + 2) / 3.




</pre>
</pre>

Versio 5. syyskuuta 2007 kello 21.50

Ykkösvaihe: todistetaan että toimii kun n=0 (0 valittiin siksi että se oli tossa summassa k:n 
lähtöarvo, "k=0", eli pienin millä tän on pakko päteä - sitä pienemmillä tosta summasta ei 
saa mitään irti):
sigma ( k = 0, 0 ) { k(k+1) } = 0(0+1)(0+2) / 3
                     0(0+1)   = 0/3
                            0 = 0

Kakkosvaihe: oletetaan että toimii kun n = x jollekin x (ja me tiedetään että 
jollakin x se toimii koska just todistettiin että vaikkapa x = 0 toimii). 
Todistetaan tän pohjalta että toimii myös kun n = x + 1 eli yhtä isompi.

Oletuksen perusteella me tiedetään että (korvataan n = x) 

sigma ( k = 0, x ) { k(k+1) } = x(x+1)(x+2) / 3   ilman mitään ongelmia, ei tarvi ees siivota.

Nyt me halutaan todistaa että (korvataan n = x+1)

sigma ( k = 0, x+1 ) { k(k+1) } = (x+1)((x+1) + 1)((x+1) + 2) / 3

Tavoite: jaetaan sigma kahteen palaan (sen saa aina jakaa kahtia niin, että ensin 
juoksutetaan juoksutusnumeroa johonkin välietappiin, ja sitten etappi+1:stä loppuun asti),
esmers
   sigma ( k = 0, y ) { k(k+1) } on sama kuin (oletetaan että z < y on hyvä välietappi)
   sigma ( k = 0, z ) { k(k+1) } + sigma ( k = z+1, y ) { k(k+1) }
Ja jaetaan se niin, että se toinen jäljelle jäävä sigma on ton oletuksen sigma, jotta
me voidaan annihiloida se korvaamalla se oletuksesta saadun kaavan oikealla puolella, 
jota on paljon helpompi käpistellä.

Tehtiin jako:

sigma ( k = 0, x ) { k(k+1) } + sigma ( k = x+1, x+1 ) { k(k+1) } :ksi.

Koska tehtiin aiemmin oletus tosta sigma(k=0,x):stä, ja tehdyt oletukset pitää aina 
maailman tappiin, me voidaan nyt heittää se mäkeen ja korvata se sillä mitä me 
oletettiin sen olevan, eli x(x+1)(x+2)/3:lla. Saadaan

x(x+1)(x+2)/3 + sigma ( k = x+1, x+1 ) { k(k+1) }.

Kakkosvaiheen väite oli siis että tämä hirviö olisi sama kuin (x+1)((x+1) + 1)((x+1) + 2) / 3.